gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0001000000000000000000000000000000000000000000000000000000000000
a = 0x1000000000000000
a = x60

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111                              | 1
  ------------------------------------------------------------- |
   110101111110010100000110001111100000000000000000000000000000 |
-  11101011111100101000001100011111                             | 1
  ------------------------------------------------------------- |
     1111000001011110000101001000010000000000000000000000000000 |
-   00000000000000000000000000000000                            | 0
-    11101011111100101000001100011111                           | 1
  ------------------------------------------------------------- |
        1101110101100100101111001101100000000000000000000000000 |
-     00000000000000000000000000000000                          | 0
-      00000000000000000000000000000000                         | 0
-       11101011111100101000001100011111                        | 1
  ------------------------------------------------------------- |
          11011010010110001111111100011100000000000000000000000 |
-        00000000000000000000000000000000                       | 0
-         11101011111100101000001100011111                      | 1
  ------------------------------------------------------------- |
            110001101010100111110000000011000000000000000000000 |
-          00000000000000000000000000000000                     | 0
-           11101011111100101000001100011111                    | 1
  ------------------------------------------------------------- |
              1011010101101101110011000100110000000000000000000 |
-            00000000000000000000000000000000                   | 0
-             11101011111100101000001100011111                  | 1
  ------------------------------------------------------------- |
               101111010011111010011110101001100000000000000000 |
-              11101011111100101000001100011111                 | 1
  ------------------------------------------------------------- |
                10101101100110000011101101110010000000000000000 |
-               11101011111100101000001100011111                | 1
  ------------------------------------------------------------- |
                 1000110011010101011100001101101000000000000000 |
-                11101011111100101000001100011111               | 1
  ------------------------------------------------------------- |
                  110011100100111111100111100010100000000000000 |
-                 11101011111100101000001100011111              | 1
  ------------------------------------------------------------- |
                    1001011011110101100100100101010000000000000 |
-                  00000000000000000000000000000000             | 0
-                   11101011111100101000001100011111            | 1
  ------------------------------------------------------------- |
                     111110100000111000100010100101100000000000 |
-                    11101011111100101000001100011111           | 1
  ------------------------------------------------------------- |
                        100011111110010100001100010010000000000 |
-                     00000000000000000000000000000000          | 0
-                      00000000000000000000000000000000         | 0
-                       11101011111100101000001100011111        | 1
  ------------------------------------------------------------- |
                         11001000001011110001111010101110000000 |
-                        11101011111100101000001100011111       | 1
  ------------------------------------------------------------- |
                           100011110111011001110110110001000000 |
-                         00000000000000000000000000000000      | 0
-                          11101011111100101000001100011111     | 1
  ------------------------------------------------------------- |
                            11001001000010011110101110110110000 |
-                           11101011111100101000001100011111    | 1
  ------------------------------------------------------------- |
                              100010111110110110100010101001000 |
-                            00000000000000000000000000000000   | 0
-                             11101011111100101000001100011111  | 1
  ------------------------------------------------------------- |
                               11000000001111100100001101110110 |
-                              11101011111100101000001100011111 | 1
  ------------------------------------------------------------- |
                                 101011110011001100000001101001 |

cquotient = b0000000000000000000000000000000000110100101010111110110011011011
cquotient = 0x0000000034abecdb
cquotient = x29 + x28 + x26 + x23 + x21 + x19 + x17 + x16 + x15 + x14 + x13 + x11 + x10 + x7 + x6 + x4 + x3 + x + 1

cremainder = b0000000000000000000000000000000000101011110011001100000001101001
cremainder = 0x000000002bccc069
cremainder = x29 + x27 + x25 + x24 + x23 + x22 + x19 + x18 + x15 + x14 + x6 + x5 + x3 + 1