gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000010000000000000000000000000000000000000000000000000000000000
a = 0x0400000000000000
a = x58

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111                            | 1
  ----------------------------------------------------------- |
   1101011111100101000001100011111000000000000000000000000000 |
-  11101011111100101000001100011111                           | 1
  ----------------------------------------------------------- |
     11110000010111100001010010000100000000000000000000000000 |
-   00000000000000000000000000000000                          | 0
-    11101011111100101000001100011111                         | 1
  ----------------------------------------------------------- |
        11011101011001001011110011011000000000000000000000000 |
-     00000000000000000000000000000000                        | 0
-      00000000000000000000000000000000                       | 0
-       11101011111100101000001100011111                      | 1
  ----------------------------------------------------------- |
          110110100101100011111111000111000000000000000000000 |
-        00000000000000000000000000000000                     | 0
-         11101011111100101000001100011111                    | 1
  ----------------------------------------------------------- |
            1100011010101001111100000000110000000000000000000 |
-          00000000000000000000000000000000                   | 0
-           11101011111100101000001100011111                  | 1
  ----------------------------------------------------------- |
              10110101011011011100110001001100000000000000000 |
-            00000000000000000000000000000000                 | 0
-             11101011111100101000001100011111                | 1
  ----------------------------------------------------------- |
               1011110100111110100111101010011000000000000000 |
-              11101011111100101000001100011111               | 1
  ----------------------------------------------------------- |
                101011011001100000111011011100100000000000000 |
-               11101011111100101000001100011111              | 1
  ----------------------------------------------------------- |
                 10001100110101010111000011011010000000000000 |
-                11101011111100101000001100011111             | 1
  ----------------------------------------------------------- |
                  1100111001001111111001111000101000000000000 |
-                 11101011111100101000001100011111            | 1
  ----------------------------------------------------------- |
                    10010110111101011001001001010100000000000 |
-                  00000000000000000000000000000000           | 0
-                   11101011111100101000001100011111          | 1
  ----------------------------------------------------------- |
                     1111101000001110001000101001011000000000 |
-                    11101011111100101000001100011111         | 1
  ----------------------------------------------------------- |
                        1000111111100101000011000100100000000 |
-                     00000000000000000000000000000000        | 0
-                      00000000000000000000000000000000       | 0
-                       11101011111100101000001100011111      | 1
  ----------------------------------------------------------- |
                         110010000010111100011110101011100000 |
-                        11101011111100101000001100011111     | 1
  ----------------------------------------------------------- |
                           1000111101110110011101101100010000 |
-                         00000000000000000000000000000000    | 0
-                          11101011111100101000001100011111   | 1
  ----------------------------------------------------------- |
                            110010010000100111101011101101100 |
-                           11101011111100101000001100011111  | 1
  ----------------------------------------------------------- |
                              1000101111101101101000101010010 |
-                            00000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000001101001010101111101100110110
cquotient = 0x000000000d2afb36
cquotient = x27 + x26 + x24 + x21 + x19 + x17 + x15 + x14 + x13 + x12 + x11 + x9 + x8 + x5 + x4 + x2 + x

cremainder = b0000000000000000000000000000000001000101111101101101000101010010
cremainder = 0x0000000045f6d152
cremainder = x30 + x26 + x24 + x23 + x22 + x21 + x20 + x18 + x17 + x15 + x14 + x12 + x8 + x6 + x4 + x