gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000010000000000000000000000000000000000000000000000000000
a = 0x0010000000000000
a = x52

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111                      | 1
  ----------------------------------------------------- |
   1101011111100101000001100011111000000000000000000000 |
-  11101011111100101000001100011111                     | 1
  ----------------------------------------------------- |
     11110000010111100001010010000100000000000000000000 |
-   00000000000000000000000000000000                    | 0
-    11101011111100101000001100011111                   | 1
  ----------------------------------------------------- |
        11011101011001001011110011011000000000000000000 |
-     00000000000000000000000000000000                  | 0
-      00000000000000000000000000000000                 | 0
-       11101011111100101000001100011111                | 1
  ----------------------------------------------------- |
          110110100101100011111111000111000000000000000 |
-        00000000000000000000000000000000               | 0
-         11101011111100101000001100011111              | 1
  ----------------------------------------------------- |
            1100011010101001111100000000110000000000000 |
-          00000000000000000000000000000000             | 0
-           11101011111100101000001100011111            | 1
  ----------------------------------------------------- |
              10110101011011011100110001001100000000000 |
-            00000000000000000000000000000000           | 0
-             11101011111100101000001100011111          | 1
  ----------------------------------------------------- |
               1011110100111110100111101010011000000000 |
-              11101011111100101000001100011111         | 1
  ----------------------------------------------------- |
                101011011001100000111011011100100000000 |
-               11101011111100101000001100011111        | 1
  ----------------------------------------------------- |
                 10001100110101010111000011011010000000 |
-                11101011111100101000001100011111       | 1
  ----------------------------------------------------- |
                  1100111001001111111001111000101000000 |
-                 11101011111100101000001100011111      | 1
  ----------------------------------------------------- |
                    10010110111101011001001001010100000 |
-                  00000000000000000000000000000000     | 0
-                   11101011111100101000001100011111    | 1
  ----------------------------------------------------- |
                     1111101000001110001000101001011000 |
-                    11101011111100101000001100011111   | 1
  ----------------------------------------------------- |
                        1000111111100101000011000100100 |
-                     00000000000000000000000000000000  | 0
-                      00000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000001101001010101111101100
cquotient = 0x000000000034abec
cquotient = x21 + x20 + x18 + x15 + x13 + x11 + x9 + x8 + x7 + x6 + x5 + x3 + x2

cremainder = b0000000000000000000000000000000001000111111100101000011000100100
cremainder = 0x0000000047f28624
cremainder = x30 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x10 + x9 + x5 + x2