gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000100000000000000000000000000000000000000000000000000
a = 0x0004000000000000
a = x50

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  100000000000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111                    | 1
  --------------------------------------------------- |
   11010111111001010000011000111110000000000000000000 |
-  11101011111100101000001100011111                   | 1
  --------------------------------------------------- |
     111100000101111000010100100001000000000000000000 |
-   00000000000000000000000000000000                  | 0
-    11101011111100101000001100011111                 | 1
  --------------------------------------------------- |
        110111010110010010111100110110000000000000000 |
-     00000000000000000000000000000000                | 0
-      00000000000000000000000000000000               | 0
-       11101011111100101000001100011111              | 1
  --------------------------------------------------- |
          1101101001011000111111110001110000000000000 |
-        00000000000000000000000000000000             | 0
-         11101011111100101000001100011111            | 1
  --------------------------------------------------- |
            11000110101010011111000000001100000000000 |
-          00000000000000000000000000000000           | 0
-           11101011111100101000001100011111          | 1
  --------------------------------------------------- |
              101101010110110111001100010011000000000 |
-            00000000000000000000000000000000         | 0
-             11101011111100101000001100011111        | 1
  --------------------------------------------------- |
               10111101001111101001111010100110000000 |
-              11101011111100101000001100011111       | 1
  --------------------------------------------------- |
                1010110110011000001110110111001000000 |
-               11101011111100101000001100011111      | 1
  --------------------------------------------------- |
                 100011001101010101110000110110100000 |
-                11101011111100101000001100011111     | 1
  --------------------------------------------------- |
                  11001110010011111110011110001010000 |
-                 11101011111100101000001100011111    | 1
  --------------------------------------------------- |
                    100101101111010110010010010101000 |
-                  00000000000000000000000000000000   | 0
-                   11101011111100101000001100011111  | 1
  --------------------------------------------------- |
                     11111010000011100010001010010110 |
-                    11101011111100101000001100011111 | 1
  --------------------------------------------------- |
                        10001111111001010000110001001 |

cquotient = b0000000000000000000000000000000000000000000011010010101011111011
cquotient = 0x00000000000d2afb
cquotient = x19 + x18 + x16 + x13 + x11 + x9 + x7 + x6 + x5 + x4 + x3 + x + 1

cremainder = b0000000000000000000000000000000000010001111111001010000110001001
cremainder = 0x0000000011fca189
cremainder = x28 + x24 + x23 + x22 + x21 + x20 + x19 + x18 + x15 + x13 + x8 + x7 + x3 + 1