gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000001000000000000000000000000000000000000000000000000
a = 0x0001000000000000
a = x48

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111                  | 1
  ------------------------------------------------- |
   110101111110010100000110001111100000000000000000 |
-  11101011111100101000001100011111                 | 1
  ------------------------------------------------- |
     1111000001011110000101001000010000000000000000 |
-   00000000000000000000000000000000                | 0
-    11101011111100101000001100011111               | 1
  ------------------------------------------------- |
        1101110101100100101111001101100000000000000 |
-     00000000000000000000000000000000              | 0
-      00000000000000000000000000000000             | 0
-       11101011111100101000001100011111            | 1
  ------------------------------------------------- |
          11011010010110001111111100011100000000000 |
-        00000000000000000000000000000000           | 0
-         11101011111100101000001100011111          | 1
  ------------------------------------------------- |
            110001101010100111110000000011000000000 |
-          00000000000000000000000000000000         | 0
-           11101011111100101000001100011111        | 1
  ------------------------------------------------- |
              1011010101101101110011000100110000000 |
-            00000000000000000000000000000000       | 0
-             11101011111100101000001100011111      | 1
  ------------------------------------------------- |
               101111010011111010011110101001100000 |
-              11101011111100101000001100011111     | 1
  ------------------------------------------------- |
                10101101100110000011101101110010000 |
-               11101011111100101000001100011111    | 1
  ------------------------------------------------- |
                 1000110011010101011100001101101000 |
-                11101011111100101000001100011111   | 1
  ------------------------------------------------- |
                  110011100100111111100111100010100 |
-                 11101011111100101000001100011111  | 1
  ------------------------------------------------- |
                    1001011011110101100100100101010 |
-                  00000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000110100101010111110
cquotient = 0x0000000000034abe
cquotient = x17 + x16 + x14 + x11 + x9 + x7 + x5 + x4 + x3 + x2 + x

cremainder = b0000000000000000000000000000000001001011011110101100100100101010
cremainder = 0x000000004b7ac92a
cremainder = x30 + x27 + x25 + x24 + x22 + x21 + x20 + x19 + x17 + x15 + x14 + x11 + x8 + x5 + x3 + x