gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000000001000000000000000000000000000000000000000000
a = 0x0000040000000000
a = x42

b = b0000000000000000000000000000000011101011111100101000001100011111
b = 0x00000000ebf2831f
b = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000 | 11101011111100101000001100011111
- 11101011111100101000001100011111            | 1
  ------------------------------------------- |
   110101111110010100000110001111100000000000 |
-  11101011111100101000001100011111           | 1
  ------------------------------------------- |
     1111000001011110000101001000010000000000 |
-   00000000000000000000000000000000          | 0
-    11101011111100101000001100011111         | 1
  ------------------------------------------- |
        1101110101100100101111001101100000000 |
-     00000000000000000000000000000000        | 0
-      00000000000000000000000000000000       | 0
-       11101011111100101000001100011111      | 1
  ------------------------------------------- |
          11011010010110001111111100011100000 |
-        00000000000000000000000000000000     | 0
-         11101011111100101000001100011111    | 1
  ------------------------------------------- |
            110001101010100111110000000011000 |
-          00000000000000000000000000000000   | 0
-           11101011111100101000001100011111  | 1
  ------------------------------------------- |
              1011010101101101110011000100110 |
-            00000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000000000110100101010
cquotient = 0x0000000000000d2a
cquotient = x11 + x10 + x8 + x5 + x3 + x

cremainder = b0000000000000000000000000000000001011010101101101110011000100110
cremainder = 0x000000005ab6e626
cremainder = x30 + x28 + x27 + x25 + x23 + x21 + x20 + x18 + x17 + x15 + x14 + x13 + x10 + x9 + x5 + x2 + x