gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000001000000000000000000000000000000000000000000000000000000
a = 0x0040000000000000
a = x54

b = b0000000000000000000000000000000010110000110000010101001011111001
b = 0x00000000b0c152f9
b = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

  1000000000000000000000000000000000000000000000000000000 | 10110000110000010101001011111001
- 10110000110000010101001011111001                        | 1
  ------------------------------------------------------- |
    11000011000001010100101111100100000000000000000000000 |
-  00000000000000000000000000000000                       | 0
-   10110000110000010101001011111001                      | 1
  ------------------------------------------------------- |
     1110011110001000001100100011101000000000000000000000 |
-    10110000110000010101001011111001                     | 1
  ------------------------------------------------------- |
      101011101001001011000001100001100000000000000000000 |
-     10110000110000010101001011111001                    | 1
  ------------------------------------------------------- |
         111100101001110010011011111110000000000000000000 |
-      00000000000000000000000000000000                   | 0
-       00000000000000000000000000000000                  | 0
-        10110000110000010101001011111001                 | 1
  ------------------------------------------------------- |
          10000100101110111001001000000010000000000000000 |
-         10110000110000010101001011111001                | 1
  ------------------------------------------------------- |
            110100011110101100000011111011000000000000000 |
-          00000000000000000000000000000000               | 0
-           10110000110000010101001011111001              | 1
  ------------------------------------------------------- |
             11000010010101001010001000101010000000000000 |
-            10110000110000010101001011111001             | 1
  ------------------------------------------------------- |
              1110010100101011111000011010011000000000000 |
-             10110000110000010101001011111001            | 1
  ------------------------------------------------------- |
               101010111101010101100110101111100000000000 |
-              10110000110000010101001011111001           | 1
  ------------------------------------------------------- |
                  110110001010000110100010001110000000000 |
-               00000000000000000000000000000000          | 0
-                00000000000000000000000000000000         | 0
-                 10110000110000010101001011111001        | 1
  ------------------------------------------------------- |
                   11010000110000011110000110000010000000 |
-                  10110000110000010101001011111001       | 1
  ------------------------------------------------------- |
                    1100000000000001011001101111011000000 |
-                   10110000110000010101001011111001      | 1
  ------------------------------------------------------- |
                     111000011000000001101000000111100000 |
-                    10110000110000010101001011111001     | 1
  ------------------------------------------------------- |
                      10100010100000100111010111001110000 |
-                     10110000110000010101001011111001    | 1
  ------------------------------------------------------- |
                         10010010000110010011100110111000 |
-                      00000000000000000000000000000000   | 0
-                       00000000000000000000000000000000  | 0
-                        10110000110000010101001011111001 | 1
  ------------------------------------------------------- |
                           100010110110000110101101000001 |

cquotient = b0000000000000000000000000000000000000000101110011011110011111001
cquotient = 0x0000000000b9bcf9
cquotient = x23 + x21 + x20 + x19 + x16 + x15 + x13 + x12 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + 1

cremainder = b0000000000000000000000000000000000100010110110000110101101000001
cremainder = 0x0000000022d86b41
cremainder = x29 + x25 + x23 + x22 + x20 + x19 + x14 + x13 + x11 + x9 + x8 + x6 + 1