gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000010000000000000000000000000000000000000000000000000000
a = 0x0010000000000000
a = x52

b = b0000000000000000000000000000000010110000110000010101001011111001
b = 0x00000000b0c152f9
b = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

  10000000000000000000000000000000000000000000000000000 | 10110000110000010101001011111001
- 10110000110000010101001011111001                      | 1
  ----------------------------------------------------- |
    110000110000010101001011111001000000000000000000000 |
-  00000000000000000000000000000000                     | 0
-   10110000110000010101001011111001                    | 1
  ----------------------------------------------------- |
     11100111100010000011001000111010000000000000000000 |
-    10110000110000010101001011111001                   | 1
  ----------------------------------------------------- |
      1010111010010010110000011000011000000000000000000 |
-     10110000110000010101001011111001                  | 1
  ----------------------------------------------------- |
         1111001010011100100110111111100000000000000000 |
-      00000000000000000000000000000000                 | 0
-       00000000000000000000000000000000                | 0
-        10110000110000010101001011111001               | 1
  ----------------------------------------------------- |
          100001001011101110010010000000100000000000000 |
-         10110000110000010101001011111001              | 1
  ----------------------------------------------------- |
            1101000111101011000000111110110000000000000 |
-          00000000000000000000000000000000             | 0
-           10110000110000010101001011111001            | 1
  ----------------------------------------------------- |
             110000100101010010100010001010100000000000 |
-            10110000110000010101001011111001           | 1
  ----------------------------------------------------- |
              11100101001010111110000110100110000000000 |
-             10110000110000010101001011111001          | 1
  ----------------------------------------------------- |
               1010101111010101011001101011111000000000 |
-              10110000110000010101001011111001         | 1
  ----------------------------------------------------- |
                  1101100010100001101000100011100000000 |
-               00000000000000000000000000000000        | 0
-                00000000000000000000000000000000       | 0
-                 10110000110000010101001011111001      | 1
  ----------------------------------------------------- |
                   110100001100000111100001100000100000 |
-                  10110000110000010101001011111001     | 1
  ----------------------------------------------------- |
                    11000000000000010110011011110110000 |
-                   10110000110000010101001011111001    | 1
  ----------------------------------------------------- |
                     1110000110000000011010000001111000 |
-                    10110000110000010101001011111001   | 1
  ----------------------------------------------------- |
                      101000101000001001110101110011100 |
-                     10110000110000010101001011111001  | 1
  ----------------------------------------------------- |
                         100100100001100100111001101110 |
-                      00000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000001011100110111100111110
cquotient = 0x00000000002e6f3e
cquotient = x21 + x19 + x18 + x17 + x14 + x13 + x11 + x10 + x9 + x8 + x5 + x4 + x3 + x2 + x

cremainder = b0000000000000000000000000000000000100100100001100100111001101110
cremainder = 0x0000000024864e6e
cremainder = x29 + x26 + x23 + x18 + x17 + x14 + x11 + x10 + x9 + x6 + x5 + x3 + x2 + x