gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000100000000000000000000000000000000000000000000000000
a = 0x0004000000000000
a = x50

b = b0000000000000000000000000000000010110000110000010101001011111001
b = 0x00000000b0c152f9
b = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

  100000000000000000000000000000000000000000000000000 | 10110000110000010101001011111001
- 10110000110000010101001011111001                    | 1
  --------------------------------------------------- |
    1100001100000101010010111110010000000000000000000 |
-  00000000000000000000000000000000                   | 0
-   10110000110000010101001011111001                  | 1
  --------------------------------------------------- |
     111001111000100000110010001110100000000000000000 |
-    10110000110000010101001011111001                 | 1
  --------------------------------------------------- |
      10101110100100101100000110000110000000000000000 |
-     10110000110000010101001011111001                | 1
  --------------------------------------------------- |
         11110010100111001001101111111000000000000000 |
-      00000000000000000000000000000000               | 0
-       00000000000000000000000000000000              | 0
-        10110000110000010101001011111001             | 1
  --------------------------------------------------- |
          1000010010111011100100100000001000000000000 |
-         10110000110000010101001011111001            | 1
  --------------------------------------------------- |
            11010001111010110000001111101100000000000 |
-          00000000000000000000000000000000           | 0
-           10110000110000010101001011111001          | 1
  --------------------------------------------------- |
             1100001001010100101000100010101000000000 |
-            10110000110000010101001011111001         | 1
  --------------------------------------------------- |
              111001010010101111100001101001100000000 |
-             10110000110000010101001011111001        | 1
  --------------------------------------------------- |
               10101011110101010110011010111110000000 |
-              10110000110000010101001011111001       | 1
  --------------------------------------------------- |
                  11011000101000011010001000111000000 |
-               00000000000000000000000000000000      | 0
-                00000000000000000000000000000000     | 0
-                 10110000110000010101001011111001    | 1
  --------------------------------------------------- |
                   1101000011000001111000011000001000 |
-                  10110000110000010101001011111001   | 1
  --------------------------------------------------- |
                    110000000000000101100110111101100 |
-                   10110000110000010101001011111001  | 1
  --------------------------------------------------- |
                     11100001100000000110100000011110 |
-                    10110000110000010101001011111001 | 1
  --------------------------------------------------- |
                      1010001010000010011101011100111 |

cquotient = b0000000000000000000000000000000000000000000010111001101111001111
cquotient = 0x00000000000b9bcf
cquotient = x19 + x17 + x16 + x15 + x12 + x11 + x9 + x8 + x7 + x6 + x3 + x2 + x + 1

cremainder = b0000000000000000000000000000000001010001010000010011101011100111
cremainder = 0x0000000051413ae7
cremainder = x30 + x28 + x24 + x22 + x16 + x13 + x12 + x11 + x9 + x7 + x6 + x5 + x2 + x + 1