gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000001000000000000000000000000000000000000000000000000
a = 0x0001000000000000
a = x48

b = b0000000000000000000000000000000010110000110000010101001011111001
b = 0x00000000b0c152f9
b = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

  1000000000000000000000000000000000000000000000000 | 10110000110000010101001011111001
- 10110000110000010101001011111001                  | 1
  ------------------------------------------------- |
    11000011000001010100101111100100000000000000000 |
-  00000000000000000000000000000000                 | 0
-   10110000110000010101001011111001                | 1
  ------------------------------------------------- |
     1110011110001000001100100011101000000000000000 |
-    10110000110000010101001011111001               | 1
  ------------------------------------------------- |
      101011101001001011000001100001100000000000000 |
-     10110000110000010101001011111001              | 1
  ------------------------------------------------- |
         111100101001110010011011111110000000000000 |
-      00000000000000000000000000000000             | 0
-       00000000000000000000000000000000            | 0
-        10110000110000010101001011111001           | 1
  ------------------------------------------------- |
          10000100101110111001001000000010000000000 |
-         10110000110000010101001011111001          | 1
  ------------------------------------------------- |
            110100011110101100000011111011000000000 |
-          00000000000000000000000000000000         | 0
-           10110000110000010101001011111001        | 1
  ------------------------------------------------- |
             11000010010101001010001000101010000000 |
-            10110000110000010101001011111001       | 1
  ------------------------------------------------- |
              1110010100101011111000011010011000000 |
-             10110000110000010101001011111001      | 1
  ------------------------------------------------- |
               101010111101010101100110101111100000 |
-              10110000110000010101001011111001     | 1
  ------------------------------------------------- |
                  110110001010000110100010001110000 |
-               00000000000000000000000000000000    | 0
-                00000000000000000000000000000000   | 0
-                 10110000110000010101001011111001  | 1
  ------------------------------------------------- |
                   11010000110000011110000110000010 |
-                  10110000110000010101001011111001 | 1
  ------------------------------------------------- |
                    1100000000000001011001101111011 |

cquotient = b0000000000000000000000000000000000000000000000101110011011110011
cquotient = 0x000000000002e6f3
cquotient = x17 + x15 + x14 + x13 + x10 + x9 + x7 + x6 + x5 + x4 + x + 1

cremainder = b0000000000000000000000000000000001100000000000001011001101111011
cremainder = 0x000000006000b37b
cremainder = x30 + x29 + x15 + x13 + x12 + x9 + x8 + x6 + x5 + x4 + x3 + x + 1