gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000010010101110100001001001101010101101110011111001
a = 0x00004ae849aadcf9
a = x46 + x43 + x41 + x39 + x38 + x37 + x35 + x30 + x27 + x24 + x23 + x21 + x19 + x17 + x15 + x14 + x12 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + 1

b = b0000000000000000000000011010011111010000000011100010000000100101
b = 0x000001a7d00e2025
b = x40 + x39 + x37 + x34 + x33 + x32 + x31 + x30 + x28 + x19 + x18 + x17 + x13 + x5 + x2 + 1

  10010101110100001001001101010101101110011111001 | 11010011111010000000011100010000000100101
- 11010011111010000000011100010000000100101       | 1
  ----------------------------------------------- |
   1000110001110001001010001000101101010110111001 |
-  11010011111010000000011100010000000100101      | 1
  ----------------------------------------------- |
    101111110011001001011111001101101000100011001 |
-   11010011111010000000011100010000000100101     | 1
  ----------------------------------------------- |
     11011001101101001011000001001101001101001001 |
-    11010011111010000000011100010000000100101    | 1
  ----------------------------------------------- |
         1010010111001011011101011101001001100001 |
-     00000000000000000000000000000000000000000   | 0
-      00000000000000000000000000000000000000000  | 0
-       00000000000000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000000000000001111000
cquotient = 0x0000000000000078
cquotient = x6 + x5 + x4 + x3

cremainder = b0000000000000000000000001010010111001011011101011101001001100001
cremainder = 0x000000a5cb75d261
cremainder = x39 + x37 + x34 + x32 + x31 + x30 + x27 + x25 + x24 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x12 + x9 + x6 + x5 + 1