gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000111000011111011011101011011101111010101111011011000
a = 0x00070fb75bbd5ed8
a = x50 + x49 + x48 + x43 + x42 + x41 + x40 + x39 + x37 + x36 + x34 + x33 + x32 + x30 + x28 + x27 + x25 + x24 + x23 + x21 + x20 + x19 + x18 + x16 + x14 + x12 + x11 + x10 + x9 + x7 + x6 + x4 + x3

b = b0000000000000010110000110011010100001110000011010111111000011111
b = 0x0002c3350e0d7e1f
b = x49 + x47 + x46 + x41 + x40 + x37 + x36 + x34 + x32 + x27 + x26 + x25 + x19 + x18 + x16 + x14 + x13 + x12 + x11 + x10 + x9 + x4 + x3 + x2 + x + 1

  111000011111011011101011011101111010101111011011000 | 10110000110011010100001110000011010111111000011111
- 10110000110011010100001110000011010111111000011111  | 1
  --------------------------------------------------- |
   10100010011101110101000111101001111010001011100110 |
-  10110000110011010100001110000011010111111000011111 | 1
  --------------------------------------------------- |
      10010101110100001001001101010101101110011111001 |

cquotient = b0000000000000000000000000000000000000000000000000000000000000011
cquotient = 0x0000000000000003
cquotient = x + 1

cremainder = b0000000000000000010010101110100001001001101010101101110011111001
cremainder = 0x00004ae849aadcf9
cremainder = x46 + x43 + x41 + x39 + x38 + x37 + x35 + x30 + x27 + x24 + x23 + x21 + x19 + x17 + x15 + x14 + x12 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + 1