gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000001011101111010110001011101010000100100011000110000100111011
a = 0x02ef58ba848c613b
a = x57 + x55 + x54 + x53 + x51 + x50 + x49 + x48 + x46 + x44 + x43 + x39 + x37 + x36 + x35 + x33 + x31 + x26 + x23 + x19 + x18 + x14 + x13 + x8 + x5 + x4 + x3 + x + 1

b = b0000000100000010001010110000111000011011101000110010101001010100
b = 0x01022b0e1ba32a54
b = x56 + x49 + x45 + x43 + x41 + x40 + x35 + x34 + x33 + x28 + x27 + x25 + x24 + x23 + x21 + x17 + x16 + x13 + x11 + x9 + x6 + x4 + x2

  1011101111010110001011101010000100100011000110000100111011 | 100000010001010110000111000011011101000110010101001010100
- 100000010001010110000111000011011101000110010101001010100  | 1
  ---------------------------------------------------------- |
    11101011000011101010011010110011110010100011010110010011 |
-  000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000000000000000000010
cquotient = 0x0000000000000002
cquotient = x

cremainder = b0000000011101011000011101010011010110011110010100011010110010011
cremainder = 0x00eb0ea6b3ca3593
cremainder = x55 + x54 + x53 + x51 + x49 + x48 + x43 + x42 + x41 + x39 + x37 + x34 + x33 + x31 + x29 + x28 + x25 + x24 + x23 + x22 + x19 + x17 + x13 + x12 + x10 + x8 + x7 + x4 + x + 1