gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000101101010110011011000100110010100001111110111011000101111111
a = 0x0b566c4ca1fbb17f
a = x59 + x57 + x56 + x54 + x52 + x50 + x49 + x46 + x45 + x43 + x42 + x38 + x35 + x34 + x31 + x29 + x24 + x23 + x22 + x21 + x20 + x19 + x17 + x16 + x15 + x13 + x12 + x8 + x6 + x5 + x4 + x3 + x2 + x + 1

b = b0000010011011100100110100111101100010010101110111110100000100010
b = 0x04dc9a7b12bbe822
b = x58 + x55 + x54 + x52 + x51 + x50 + x47 + x44 + x43 + x41 + x38 + x37 + x36 + x35 + x33 + x32 + x28 + x25 + x23 + x21 + x20 + x19 + x17 + x16 + x15 + x14 + x13 + x11 + x5 + x

  101101010110011011000100110010100001111110111011000101111111 | 10011011100100110100111101100010010101110111110100000100010
- 10011011100100110100111101100010010101110111110100000100010  | 1
  ------------------------------------------------------------ |
    1011101111010110001011101010000100100011000110000100111011 |
-  00000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000000000000000000010
cquotient = 0x0000000000000002
cquotient = x

cremainder = b0000001011101111010110001011101010000100100011000110000100111011
cremainder = 0x02ef58ba848c613b
cremainder = x57 + x55 + x54 + x53 + x51 + x50 + x49 + x48 + x46 + x44 + x43 + x39 + x37 + x36 + x35 + x33 + x31 + x26 + x23 + x19 + x18 + x14 + x13 + x8 + x5 + x4 + x3 + x + 1