gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000004000000000000000000000
a = x86

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111                         | 1
  --------------------------------------------------------------------------------------- |
   10011001110111111000100000000101000110010100001000111110110111000000000000000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111                        | 1
  --------------------------------------------------------------------------------------- |
    1010101001100000100110000000111100101011110001100100001101100100000000000000000000000 |
-   110011001110111111000100000000101000110010100001000111110110111                       | 1
  --------------------------------------------------------------------------------------- |
     110011010001111010111000000110110100111011001110101110000001010000000000000000000000 |
-    110011001110111111000100000000101000110010100001000111110110111                      | 1
  --------------------------------------------------------------------------------------- |
            11111000101111100000110011100001001101111101001110111101000000000000000000000 |
-     000000000000000000000000000000000000000000000000000000000000000                     | 0
-      000000000000000000000000000000000000000000000000000000000000000                    | 0
-       000000000000000000000000000000000000000000000000000000000000000                   | 0
-        000000000000000000000000000000000000000000000000000000000000000                  | 0
-         000000000000000000000000000000000000000000000000000000000000000                 | 0
-          000000000000000000000000000000000000000000000000000000000000000                | 0
-           110011001110111111000100000000101000110010100001000111110110111               | 1
  --------------------------------------------------------------------------------------- |
              110100010100011100100011100011101110110111001010100010011011100000000000000 |
-            000000000000000000000000000000000000000000000000000000000000000              | 0
-             110011001110111111000100000000101000110010100001000111110110111             | 1
  --------------------------------------------------------------------------------------- |
                 111011010100011100111100011000110000101101011100101101101011000000000000 |
-              000000000000000000000000000000000000000000000000000000000000000            | 0
-               000000000000000000000000000000000000000000000000000000000000000           | 0
-                110011001110111111000100000000101000110010100001000111110110111          | 1
  --------------------------------------------------------------------------------------- |
                   1000011010100011111000011000011000011111111101101010011101111000000000 |
-                 000000000000000000000000000000000000000000000000000000000000000         | 0
-                  110011001110111111000100000000101000110010100001000111110110111        | 1
  --------------------------------------------------------------------------------------- |
                    100101001001100001001011000010010010011010101111011100000010110000000 |
-                   110011001110111111000100000000101000110010100001000111110110111       | 1
  --------------------------------------------------------------------------------------- |
                     10110000111011110001111000010111010101000001110011011110100001000000 |
-                    110011001110111111000100000000101000110010100001000111110110111      | 1
  --------------------------------------------------------------------------------------- |
                      1111100000000001101101000010101110110001011110111000001111010100000 |
-                     110011001110111111000100000000101000110010100001000111110110111     | 1
  --------------------------------------------------------------------------------------- |
                        11010011101110011100000010100100111101110110101001110010111010000 |
-                      000000000000000000000000000000000000000000000000000000000000000    | 0
-                       110011001110111111000100000000101000110010100001000111110110111   | 1
  --------------------------------------------------------------------------------------- |
                           11111010101100000010010100110011110111100101101101101100001100 |
-                        000000000000000000000000000000000000000000000000000000000000000  | 0
-                         000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111000000101001011110100
cquotient = 0x00000000000000000000000001e052f4
cquotient = x24 + x23 + x22 + x21 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x2

cremainder = b00000000000000000000000000000000000000000000000000000000000000000011111010101100000010010100110011110111100101101101101100001100
cremainder = 0x00000000000000003eac094cf796db0c
cremainder = x61 + x60 + x59 + x58 + x57 + x55 + x53 + x51 + x50 + x43 + x40 + x38 + x35 + x34 + x31 + x30 + x29 + x28 + x26 + x25 + x24 + x23 + x20 + x18 + x17 + x15 + x14 + x12 + x11 + x9 + x8 + x3 + x2