gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000001000000000000000000000
a = x84

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111                       | 1
  ------------------------------------------------------------------------------------- |
   100110011101111110001000000001010001100101000010001111101101110000000000000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111                      | 1
  ------------------------------------------------------------------------------------- |
    10101010011000001001100000001111001010111100011001000011011001000000000000000000000 |
-   110011001110111111000100000000101000110010100001000111110110111                     | 1
  ------------------------------------------------------------------------------------- |
     1100110100011110101110000001101101001110110011101011100000010100000000000000000000 |
-    110011001110111111000100000000101000110010100001000111110110111                    | 1
  ------------------------------------------------------------------------------------- |
            111110001011111000001100111000010011011111010011101111010000000000000000000 |
-     000000000000000000000000000000000000000000000000000000000000000                   | 0
-      000000000000000000000000000000000000000000000000000000000000000                  | 0
-       000000000000000000000000000000000000000000000000000000000000000                 | 0
-        000000000000000000000000000000000000000000000000000000000000000                | 0
-         000000000000000000000000000000000000000000000000000000000000000               | 0
-          000000000000000000000000000000000000000000000000000000000000000              | 0
-           110011001110111111000100000000101000110010100001000111110110111             | 1
  ------------------------------------------------------------------------------------- |
              1101000101000111001000111000111011101101110010101000100110111000000000000 |
-            000000000000000000000000000000000000000000000000000000000000000            | 0
-             110011001110111111000100000000101000110010100001000111110110111           | 1
  ------------------------------------------------------------------------------------- |
                 1110110101000111001111000110001100001011010111001011011010110000000000 |
-              000000000000000000000000000000000000000000000000000000000000000          | 0
-               000000000000000000000000000000000000000000000000000000000000000         | 0
-                110011001110111111000100000000101000110010100001000111110110111        | 1
  ------------------------------------------------------------------------------------- |
                   10000110101000111110000110000110000111111111011010100111011110000000 |
-                 000000000000000000000000000000000000000000000000000000000000000       | 0
-                  110011001110111111000100000000101000110010100001000111110110111      | 1
  ------------------------------------------------------------------------------------- |
                    1001010010011000010010110000100100100110101011110111000000101100000 |
-                   110011001110111111000100000000101000110010100001000111110110111     | 1
  ------------------------------------------------------------------------------------- |
                     101100001110111100011110000101110101010000011100110111101000010000 |
-                    110011001110111111000100000000101000110010100001000111110110111    | 1
  ------------------------------------------------------------------------------------- |
                      11111000000000011011010000101011101100010111101110000011110101000 |
-                     110011001110111111000100000000101000110010100001000111110110111   | 1
  ------------------------------------------------------------------------------------- |
                        110100111011100111000000101001001111011101101010011100101110100 |
-                      000000000000000000000000000000000000000000000000000000000000000  | 0
-                       110011001110111111000100000000101000110010100001000111110110111 | 1
  ------------------------------------------------------------------------------------- |
                           111110101011000000100101001100111101111001011011011011000011 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011110000001010010111101
cquotient = 0x000000000000000000000000007814bd
cquotient = x22 + x21 + x20 + x19 + x12 + x10 + x7 + x5 + x4 + x3 + x2 + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000000111110101011000000100101001100111101111001011011011011000011
cremainder = 0x00000000000000000fab02533de5b6c3
cremainder = x59 + x58 + x57 + x56 + x55 + x53 + x51 + x49 + x48 + x41 + x38 + x36 + x33 + x32 + x29 + x28 + x27 + x26 + x24 + x23 + x22 + x21 + x18 + x16 + x15 + x13 + x12 + x10 + x9 + x7 + x6 + x + 1