gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000400000000000000000000
a = x82

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111                     | 1
  ----------------------------------------------------------------------------------- |
   1001100111011111100010000000010100011001010000100011111011011100000000000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111                    | 1
  ----------------------------------------------------------------------------------- |
    101010100110000010011000000011110010101111000110010000110110010000000000000000000 |
-   110011001110111111000100000000101000110010100001000111110110111                   | 1
  ----------------------------------------------------------------------------------- |
     11001101000111101011100000011011010011101100111010111000000101000000000000000000 |
-    110011001110111111000100000000101000110010100001000111110110111                  | 1
  ----------------------------------------------------------------------------------- |
            1111100010111110000011001110000100110111110100111011110100000000000000000 |
-     000000000000000000000000000000000000000000000000000000000000000                 | 0
-      000000000000000000000000000000000000000000000000000000000000000                | 0
-       000000000000000000000000000000000000000000000000000000000000000               | 0
-        000000000000000000000000000000000000000000000000000000000000000              | 0
-         000000000000000000000000000000000000000000000000000000000000000             | 0
-          000000000000000000000000000000000000000000000000000000000000000            | 0
-           110011001110111111000100000000101000110010100001000111110110111           | 1
  ----------------------------------------------------------------------------------- |
              11010001010001110010001110001110111011011100101010001001101110000000000 |
-            000000000000000000000000000000000000000000000000000000000000000          | 0
-             110011001110111111000100000000101000110010100001000111110110111         | 1
  ----------------------------------------------------------------------------------- |
                 11101101010001110011110001100011000010110101110010110110101100000000 |
-              000000000000000000000000000000000000000000000000000000000000000        | 0
-               000000000000000000000000000000000000000000000000000000000000000       | 0
-                110011001110111111000100000000101000110010100001000111110110111      | 1
  ----------------------------------------------------------------------------------- |
                   100001101010001111100001100001100001111111110110101001110111100000 |
-                 000000000000000000000000000000000000000000000000000000000000000     | 0
-                  110011001110111111000100000000101000110010100001000111110110111    | 1
  ----------------------------------------------------------------------------------- |
                    10010100100110000100101100001001001001101010111101110000001011000 |
-                   110011001110111111000100000000101000110010100001000111110110111   | 1
  ----------------------------------------------------------------------------------- |
                     1011000011101111000111100001011101010100000111001101111010000100 |
-                    110011001110111111000100000000101000110010100001000111110110111  | 1
  ----------------------------------------------------------------------------------- |
                      111110000000000110110100001010111011000101111011100000111101010 |
-                     110011001110111111000100000000101000110010100001000111110110111 | 1
  ----------------------------------------------------------------------------------- |
                        1101001110111001110000001010010011110111011010100111001011101 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111100000010100101111
cquotient = 0x000000000000000000000000001e052f
cquotient = x20 + x19 + x18 + x17 + x10 + x8 + x5 + x3 + x2 + x + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000001101001110111001110000001010010011110111011010100111001011101
cremainder = 0x00000000000000001a7738149eed4e5d
cremainder = x60 + x59 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x45 + x44 + x43 + x36 + x34 + x31 + x28 + x27 + x26 + x25 + x23 + x22 + x21 + x19 + x18 + x16 + x14 + x11 + x10 + x9 + x6 + x4 + x3 + x2 + 1