gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000040000000000000000000
a = x78

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111                 | 1
  ------------------------------------------------------------------------------- |
   100110011101111110001000000001010001100101000010001111101101110000000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111                | 1
  ------------------------------------------------------------------------------- |
    10101010011000001001100000001111001010111100011001000011011001000000000000000 |
-   110011001110111111000100000000101000110010100001000111110110111               | 1
  ------------------------------------------------------------------------------- |
     1100110100011110101110000001101101001110110011101011100000010100000000000000 |
-    110011001110111111000100000000101000110010100001000111110110111              | 1
  ------------------------------------------------------------------------------- |
            111110001011111000001100111000010011011111010011101111010000000000000 |
-     000000000000000000000000000000000000000000000000000000000000000             | 0
-      000000000000000000000000000000000000000000000000000000000000000            | 0
-       000000000000000000000000000000000000000000000000000000000000000           | 0
-        000000000000000000000000000000000000000000000000000000000000000          | 0
-         000000000000000000000000000000000000000000000000000000000000000         | 0
-          000000000000000000000000000000000000000000000000000000000000000        | 0
-           110011001110111111000100000000101000110010100001000111110110111       | 1
  ------------------------------------------------------------------------------- |
              1101000101000111001000111000111011101101110010101000100110111000000 |
-            000000000000000000000000000000000000000000000000000000000000000      | 0
-             110011001110111111000100000000101000110010100001000111110110111     | 1
  ------------------------------------------------------------------------------- |
                 1110110101000111001111000110001100001011010111001011011010110000 |
-              000000000000000000000000000000000000000000000000000000000000000    | 0
-               000000000000000000000000000000000000000000000000000000000000000   | 0
-                110011001110111111000100000000101000110010100001000111110110111  | 1
  ------------------------------------------------------------------------------- |
                   10000110101000111110000110000110000111111111011010100111011110 |
-                 000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011110000001010010
cquotient = 0x0000000000000000000000000001e052
cquotient = x16 + x15 + x14 + x13 + x6 + x4 + x

cremainder = b00000000000000000000000000000000000000000000000000000000000000000010000110101000111110000110000110000111111111011010100111011110
cremainder = 0x000000000000000021a8f86187fda9de
cremainder = x61 + x56 + x55 + x53 + x51 + x47 + x46 + x45 + x44 + x43 + x38 + x37 + x32 + x31 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 + x16 + x15 + x13 + x11 + x8 + x7 + x6 + x4 + x3 + x2 + x