gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000010000000000000000000
a = x76

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111               | 1
  ----------------------------------------------------------------------------- |
   1001100111011111100010000000010100011001010000100011111011011100000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111              | 1
  ----------------------------------------------------------------------------- |
    101010100110000010011000000011110010101111000110010000110110010000000000000 |
-   110011001110111111000100000000101000110010100001000111110110111             | 1
  ----------------------------------------------------------------------------- |
     11001101000111101011100000011011010011101100111010111000000101000000000000 |
-    110011001110111111000100000000101000110010100001000111110110111            | 1
  ----------------------------------------------------------------------------- |
            1111100010111110000011001110000100110111110100111011110100000000000 |
-     000000000000000000000000000000000000000000000000000000000000000           | 0
-      000000000000000000000000000000000000000000000000000000000000000          | 0
-       000000000000000000000000000000000000000000000000000000000000000         | 0
-        000000000000000000000000000000000000000000000000000000000000000        | 0
-         000000000000000000000000000000000000000000000000000000000000000       | 0
-          000000000000000000000000000000000000000000000000000000000000000      | 0
-           110011001110111111000100000000101000110010100001000111110110111     | 1
  ----------------------------------------------------------------------------- |
              11010001010001110010001110001110111011011100101010001001101110000 |
-            000000000000000000000000000000000000000000000000000000000000000    | 0
-             110011001110111111000100000000101000110010100001000111110110111   | 1
  ----------------------------------------------------------------------------- |
                 11101101010001110011110001100011000010110101110010110110101100 |
-              000000000000000000000000000000000000000000000000000000000000000  | 0
-               000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111100000010100
cquotient = 0x00000000000000000000000000007814
cquotient = x14 + x13 + x12 + x11 + x4 + x2

cremainder = b00000000000000000000000000000000000000000000000000000000000000000011101101010001110011110001100011000010110101110010110110101100
cremainder = 0x00000000000000003b51cf18c2d72dac
cremainder = x61 + x60 + x59 + x57 + x56 + x54 + x52 + x48 + x47 + x46 + x43 + x42 + x41 + x40 + x36 + x35 + x31 + x30 + x25 + x23 + x22 + x20 + x18 + x17 + x16 + x13 + x11 + x10 + x8 + x7 + x5 + x3 + x2