gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000004000000000000000000
a = x74

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111             | 1
  --------------------------------------------------------------------------- |
   10011001110111111000100000000101000110010100001000111110110111000000000000 |
-  110011001110111111000100000000101000110010100001000111110110111            | 1
  --------------------------------------------------------------------------- |
    1010101001100000100110000000111100101011110001100100001101100100000000000 |
-   110011001110111111000100000000101000110010100001000111110110111           | 1
  --------------------------------------------------------------------------- |
     110011010001111010111000000110110100111011001110101110000001010000000000 |
-    110011001110111111000100000000101000110010100001000111110110111          | 1
  --------------------------------------------------------------------------- |
            11111000101111100000110011100001001101111101001110111101000000000 |
-     000000000000000000000000000000000000000000000000000000000000000         | 0
-      000000000000000000000000000000000000000000000000000000000000000        | 0
-       000000000000000000000000000000000000000000000000000000000000000       | 0
-        000000000000000000000000000000000000000000000000000000000000000      | 0
-         000000000000000000000000000000000000000000000000000000000000000     | 0
-          000000000000000000000000000000000000000000000000000000000000000    | 0
-           110011001110111111000100000000101000110010100001000111110110111   | 1
  --------------------------------------------------------------------------- |
              110100010100011100100011100011101110110111001010100010011011100 |
-            000000000000000000000000000000000000000000000000000000000000000  | 0
-             110011001110111111000100000000101000110010100001000111110110111 | 1
  --------------------------------------------------------------------------- |
                 111011010100011100111100011000110000101101011100101101101011 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111000000101
cquotient = 0x00000000000000000000000000001e05
cquotient = x12 + x11 + x10 + x9 + x2 + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000000111011010100011100111100011000110000101101011100101101101011
cremainder = 0x00000000000000000ed473c630b5cb6b
cremainder = x59 + x58 + x57 + x55 + x54 + x52 + x50 + x46 + x45 + x44 + x41 + x40 + x39 + x38 + x34 + x33 + x29 + x28 + x23 + x21 + x20 + x18 + x16 + x15 + x14 + x11 + x9 + x8 + x6 + x5 + x3 + x + 1