gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000000010000000000000000
a = x64

b = b00000000000000000000000000000000000000000000000000000000000000000110011001110111111000100000000101000110010100001000111110110111
b = 0x00000000000000006677e20146508fb7
b = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000 | 110011001110111111000100000000101000110010100001000111110110111
- 110011001110111111000100000000101000110010100001000111110110111   | 1
  ----------------------------------------------------------------- |
   1001100111011111100010000000010100011001010000100011111011011100 |
-  110011001110111111000100000000101000110010100001000111110110111  | 1
  ----------------------------------------------------------------- |
    101010100110000010011000000011110010101111000110010000110110010 |
-   110011001110111111000100000000101000110010100001000111110110111 | 1
  ----------------------------------------------------------------- |
     11001101000111101011100000011011010011101100111010111000000101 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111
cquotient = 0x00000000000000000000000000000007
cquotient = x2 + x + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000011001101000111101011100000011011010011101100111010111000000101
cremainder = 0x00000000000000003347ae06d3b3ae05
cremainder = x61 + x60 + x57 + x56 + x54 + x50 + x49 + x48 + x47 + x45 + x43 + x42 + x41 + x34 + x33 + x31 + x30 + x28 + x25 + x24 + x23 + x21 + x20 + x17 + x16 + x15 + x13 + x11 + x10 + x9 + x2 + 1