gf(2) Iterate until all irreducible factors of f0 are found

f0 = b0110011001110111111000100000000101000110010100001000111110110111
f0 = 0x6677e20146508fb7
f0 = x62 + x61 + x58 + x57 + x54 + x53 + x52 + x50 + x49 + x48 + x47 + x46 + x45 + x41 + x32 + x30 + x26 + x25 + x22 + x20 + x15 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1

Find at least one irreducible factor of f0, if it exists.

Remove f0 from list of resulting factors.
Add:

f1 = b0000000000000000000000000000000010110000110000010101001011111001
f1 = 0x00000000b0c152f9
f1 = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

f2 = b0000000000000000000000000000000011101011111100101000001100011111
f2 = 0x00000000ebf2831f
f2 = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

f1 = b0000000000000000000000000000000010110000110000010101001011111001
f1 = 0x00000000b0c152f9
f1 = x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1

Find at least one irreducible factor of f1, if it exists.

f1 is irreducible.

f2 = b0000000000000000000000000000000011101011111100101000001100011111
f2 = 0x00000000ebf2831f
f2 = x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1

Find at least one irreducible factor of f2, if it exists.

f2 is irreducible.

Irreducible factors:

f0 = (b10110000110000010101001011111001)(b11101011111100101000001100011111)
f0 = (0xb0c152f9)(0xebf2831f)
f0 = (x31 + x29 + x28 + x23 + x22 + x16 + x14 + x12 + x9 + x7 + x6 + x5 + x4 + x3 + 1)(x31 + x30 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x17 + x15 + x9 + x8 + x4 + x3 + x2 + x + 1)