gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000040000000000000000000000
a = x90

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111                            | 1
  ------------------------------------------------------------------------------------------- |
     1101010111010011010001110111100001100111101011100001010111111000000000000000000000000000 |
-  0000000000000000000000000000000000000000000000000000000000000000                           | 0
-   0000000000000000000000000000000000000000000000000000000000000000                          | 0
-    1001101010111010011010001110111100001100111101011100001010111111                         | 1
  ------------------------------------------------------------------------------------------- |
      100111101101001001011111001011101101011010110111101011101000111000000000000000000000000 |
-     1001101010111010011010001110111100001100111101011100001010111111                        | 1
  ------------------------------------------------------------------------------------------- |
           1000110100000110111110000011101101001000010011011000011000100000000000000000000000 |
-      0000000000000000000000000000000000000000000000000000000000000000                       | 0
-       0000000000000000000000000000000000000000000000000000000000000000                      | 0
-        0000000000000000000000000000000000000000000000000000000000000000                     | 0
-         0000000000000000000000000000000000000000000000000000000000000000                    | 0
-          1001101010111010011010001110111100001100111101011100001010111111                   | 1
  ------------------------------------------------------------------------------------------- |
              1011110111100100100001101010001000100101110000100010010011111000000000000000000 |
-           0000000000000000000000000000000000000000000000000000000000000000                  | 0
-            0000000000000000000000000000000000000000000000000000000000000000                 | 0
-             1001101010111010011010001110111100001100111101011100001010111111                | 1
  ------------------------------------------------------------------------------------------- |
                10011101011110111011100100110100101001001101111110011001000111000000000000000 |
-              0000000000000000000000000000000000000000000000000000000000000000               | 0
-               1001101010111010011010001110111100001100111101011100001010111111              | 1
  ------------------------------------------------------------------------------------------- |
                     111110000011101000111011011101010000010101001011011101000110000000000000 |
-                0000000000000000000000000000000000000000000000000000000000000000             | 0
-                 0000000000000000000000000000000000000000000000000000000000000000            | 0
-                  0000000000000000000000000000000000000000000000000000000000000000           | 0
-                   0000000000000000000000000000000000000000000000000000000000000000          | 0
-                    1001101010111010011010001110111100001100111101011100001010111111         | 1
  ------------------------------------------------------------------------------------------- |
                      11000101000000001010011100110100000100110111110101101101101111100000000 |
-                     1001101010111010011010001110111100001100111101011100001010111111        | 1
  ------------------------------------------------------------------------------------------- |
                       1011111101110101100111111011011000111111000100010101111000000010000000 |
-                      1001101010111010011010001110111100001100111101011100001010111111       | 1
  ------------------------------------------------------------------------------------------- |
                         10010111001111111101110101100100110011111001001001110010111101000000 |
-                       0000000000000000000000000000000000000000000000000000000000000000      | 0
-                        1001101010111010011010001110111100001100111101011100001010111111     | 1
  ------------------------------------------------------------------------------------------- |
                             1101100001011011010110001011110000110110011110110000010010110000 |
-                         0000000000000000000000000000000000000000000000000000000000000000    | 0
-                          0000000000000000000000000000000000000000000000000000000000000000   | 0
-                           0000000000000000000000000000000000000000000000000000000000000000  | 0
-                            1001101010111010011010001110111100001100111101011100001010111111 | 1
  ------------------------------------------------------------------------------------------- |
                              100001011100001001100000101001100111010100011101100011000001111 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001001100001001010000111010001
cquotient = 0x0000000000000000000000000984a1d1
cquotient = x27 + x24 + x23 + x18 + x15 + x13 + x8 + x7 + x6 + x4 + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000100001011100001001100000101001100111010100011101100011000001111
cremainder = 0x000000000000000042e130533a8ec60f
cremainder = x62 + x57 + x55 + x54 + x53 + x48 + x45 + x44 + x38 + x36 + x33 + x32 + x29 + x28 + x27 + x25 + x23 + x19 + x18 + x17 + x15 + x14 + x10 + x9 + x3 + x2 + x + 1