gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000010000000000000000000000
a = x88

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111                          | 1
  ----------------------------------------------------------------------------------------- |
     11010101110100110100011101111000011001111010111000010101111110000000000000000000000000 |
-  0000000000000000000000000000000000000000000000000000000000000000                         | 0
-   0000000000000000000000000000000000000000000000000000000000000000                        | 0
-    1001101010111010011010001110111100001100111101011100001010111111                       | 1
  ----------------------------------------------------------------------------------------- |
      1001111011010010010111110010111011010110101101111010111010001110000000000000000000000 |
-     1001101010111010011010001110111100001100111101011100001010111111                      | 1
  ----------------------------------------------------------------------------------------- |
           10001101000001101111100000111011010010000100110110000110001000000000000000000000 |
-      0000000000000000000000000000000000000000000000000000000000000000                     | 0
-       0000000000000000000000000000000000000000000000000000000000000000                    | 0
-        0000000000000000000000000000000000000000000000000000000000000000                   | 0
-         0000000000000000000000000000000000000000000000000000000000000000                  | 0
-          1001101010111010011010001110111100001100111101011100001010111111                 | 1
  ----------------------------------------------------------------------------------------- |
              10111101111001001000011010100010001001011100001000100100111110000000000000000 |
-           0000000000000000000000000000000000000000000000000000000000000000                | 0
-            0000000000000000000000000000000000000000000000000000000000000000               | 0
-             1001101010111010011010001110111100001100111101011100001010111111              | 1
  ----------------------------------------------------------------------------------------- |
                100111010111101110111001001101001010010011011111100110010001110000000000000 |
-              0000000000000000000000000000000000000000000000000000000000000000             | 0
-               1001101010111010011010001110111100001100111101011100001010111111            | 1
  ----------------------------------------------------------------------------------------- |
                     1111100000111010001110110111010100000101010010110111010001100000000000 |
-                0000000000000000000000000000000000000000000000000000000000000000           | 0
-                 0000000000000000000000000000000000000000000000000000000000000000          | 0
-                  0000000000000000000000000000000000000000000000000000000000000000         | 0
-                   0000000000000000000000000000000000000000000000000000000000000000        | 0
-                    1001101010111010011010001110111100001100111101011100001010111111       | 1
  ----------------------------------------------------------------------------------------- |
                      110001010000000010100111001101000001001101111101011011011011111000000 |
-                     1001101010111010011010001110111100001100111101011100001010111111      | 1
  ----------------------------------------------------------------------------------------- |
                       10111111011101011001111110110110001111110001000101011110000000100000 |
-                      1001101010111010011010001110111100001100111101011100001010111111     | 1
  ----------------------------------------------------------------------------------------- |
                         100101110011111111011101011001001100111110010010011100101111010000 |
-                       0000000000000000000000000000000000000000000000000000000000000000    | 0
-                        1001101010111010011010001110111100001100111101011100001010111111   | 1
  ----------------------------------------------------------------------------------------- |
                             11011000010110110101100010111100001101100111101100000100101100 |
-                         0000000000000000000000000000000000000000000000000000000000000000  | 0
-                          0000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010011000010010100001110100
cquotient = 0x00000000000000000000000002612874
cquotient = x25 + x22 + x21 + x16 + x13 + x11 + x6 + x5 + x4 + x2

cremainder = b00000000000000000000000000000000000000000000000000000000000000000011011000010110110101100010111100001101100111101100000100101100
cremainder = 0x00000000000000003616d62f0d9ec12c
cremainder = x61 + x60 + x58 + x57 + x52 + x50 + x49 + x47 + x46 + x44 + x42 + x41 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x24 + x23 + x20 + x19 + x18 + x17 + x15 + x14 + x8 + x5 + x3 + x2