gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000004000000000000000000000
a = x86

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111                        | 1
  --------------------------------------------------------------------------------------- |
     110101011101001101000111011110000110011110101110000101011111100000000000000000000000 |
-  0000000000000000000000000000000000000000000000000000000000000000                       | 0
-   0000000000000000000000000000000000000000000000000000000000000000                      | 0
-    1001101010111010011010001110111100001100111101011100001010111111                     | 1
  --------------------------------------------------------------------------------------- |
      10011110110100100101111100101110110101101011011110101110100011100000000000000000000 |
-     1001101010111010011010001110111100001100111101011100001010111111                    | 1
  --------------------------------------------------------------------------------------- |
           100011010000011011111000001110110100100001001101100001100010000000000000000000 |
-      0000000000000000000000000000000000000000000000000000000000000000                   | 0
-       0000000000000000000000000000000000000000000000000000000000000000                  | 0
-        0000000000000000000000000000000000000000000000000000000000000000                 | 0
-         0000000000000000000000000000000000000000000000000000000000000000                | 0
-          1001101010111010011010001110111100001100111101011100001010111111               | 1
  --------------------------------------------------------------------------------------- |
              101111011110010010000110101000100010010111000010001001001111100000000000000 |
-           0000000000000000000000000000000000000000000000000000000000000000              | 0
-            0000000000000000000000000000000000000000000000000000000000000000             | 0
-             1001101010111010011010001110111100001100111101011100001010111111            | 1
  --------------------------------------------------------------------------------------- |
                1001110101111011101110010011010010100100110111111001100100011100000000000 |
-              0000000000000000000000000000000000000000000000000000000000000000           | 0
-               1001101010111010011010001110111100001100111101011100001010111111          | 1
  --------------------------------------------------------------------------------------- |
                     11111000001110100011101101110101000001010100101101110100011000000000 |
-                0000000000000000000000000000000000000000000000000000000000000000         | 0
-                 0000000000000000000000000000000000000000000000000000000000000000        | 0
-                  0000000000000000000000000000000000000000000000000000000000000000       | 0
-                   0000000000000000000000000000000000000000000000000000000000000000      | 0
-                    1001101010111010011010001110111100001100111101011100001010111111     | 1
  --------------------------------------------------------------------------------------- |
                      1100010100000000101001110011010000010011011111010110110110111110000 |
-                     1001101010111010011010001110111100001100111101011100001010111111    | 1
  --------------------------------------------------------------------------------------- |
                       101111110111010110011111101101100011111100010001010111100000001000 |
-                      1001101010111010011010001110111100001100111101011100001010111111   | 1
  --------------------------------------------------------------------------------------- |
                         1001011100111111110111010110010011001111100100100111001011110100 |
-                       0000000000000000000000000000000000000000000000000000000000000000  | 0
-                        1001101010111010011010001110111100001100111101011100001010111111 | 1
  --------------------------------------------------------------------------------------- |
                             110110000101101101011000101111000011011001111011000001001011 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100110000100101000011101
cquotient = 0x00000000000000000000000000984a1d
cquotient = x23 + x20 + x19 + x14 + x11 + x9 + x4 + x3 + x2 + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000000110110000101101101011000101111000011011001111011000001001011
cremainder = 0x00000000000000000d85b58bc367b04b
cremainder = x59 + x58 + x56 + x55 + x50 + x48 + x47 + x45 + x44 + x42 + x40 + x39 + x35 + x33 + x32 + x31 + x30 + x25 + x24 + x22 + x21 + x18 + x17 + x16 + x15 + x13 + x12 + x6 + x3 + x + 1