gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000040000000000000000000
a = x78

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111                | 1
  ------------------------------------------------------------------------------- |
     1101010111010011010001110111100001100111101011100001010111111000000000000000 |
-  0000000000000000000000000000000000000000000000000000000000000000               | 0
-   0000000000000000000000000000000000000000000000000000000000000000              | 0
-    1001101010111010011010001110111100001100111101011100001010111111             | 1
  ------------------------------------------------------------------------------- |
      100111101101001001011111001011101101011010110111101011101000111000000000000 |
-     1001101010111010011010001110111100001100111101011100001010111111            | 1
  ------------------------------------------------------------------------------- |
           1000110100000110111110000011101101001000010011011000011000100000000000 |
-      0000000000000000000000000000000000000000000000000000000000000000           | 0
-       0000000000000000000000000000000000000000000000000000000000000000          | 0
-        0000000000000000000000000000000000000000000000000000000000000000         | 0
-         0000000000000000000000000000000000000000000000000000000000000000        | 0
-          1001101010111010011010001110111100001100111101011100001010111111       | 1
  ------------------------------------------------------------------------------- |
              1011110111100100100001101010001000100101110000100010010011111000000 |
-           0000000000000000000000000000000000000000000000000000000000000000      | 0
-            0000000000000000000000000000000000000000000000000000000000000000     | 0
-             1001101010111010011010001110111100001100111101011100001010111111    | 1
  ------------------------------------------------------------------------------- |
                10011101011110111011100100110100101001001101111110011001000111000 |
-              0000000000000000000000000000000000000000000000000000000000000000   | 0
-               1001101010111010011010001110111100001100111101011100001010111111  | 1
  ------------------------------------------------------------------------------- |
                     111110000011101000111011011101010000010101001011011101000110 |
-                0000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001001100001001010
cquotient = 0x0000000000000000000000000000984a
cquotient = x15 + x12 + x11 + x6 + x3 + x

cremainder = b00000000000000000000000000000000000000000000000000000000000000000000111110000011101000111011011101010000010101001011011101000110
cremainder = 0x00000000000000000f83a3b75054b746
cremainder = x59 + x58 + x57 + x56 + x55 + x49 + x48 + x47 + x45 + x41 + x40 + x39 + x37 + x36 + x34 + x33 + x32 + x30 + x28 + x22 + x20 + x18 + x15 + x13 + x12 + x10 + x9 + x8 + x6 + x2 + x