gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000010000000000000000000
a = x76

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111              | 1
  ----------------------------------------------------------------------------- |
     11010101110100110100011101111000011001111010111000010101111110000000000000 |
-  0000000000000000000000000000000000000000000000000000000000000000             | 0
-   0000000000000000000000000000000000000000000000000000000000000000            | 0
-    1001101010111010011010001110111100001100111101011100001010111111           | 1
  ----------------------------------------------------------------------------- |
      1001111011010010010111110010111011010110101101111010111010001110000000000 |
-     1001101010111010011010001110111100001100111101011100001010111111          | 1
  ----------------------------------------------------------------------------- |
           10001101000001101111100000111011010010000100110110000110001000000000 |
-      0000000000000000000000000000000000000000000000000000000000000000         | 0
-       0000000000000000000000000000000000000000000000000000000000000000        | 0
-        0000000000000000000000000000000000000000000000000000000000000000       | 0
-         0000000000000000000000000000000000000000000000000000000000000000      | 0
-          1001101010111010011010001110111100001100111101011100001010111111     | 1
  ----------------------------------------------------------------------------- |
              10111101111001001000011010100010001001011100001000100100111110000 |
-           0000000000000000000000000000000000000000000000000000000000000000    | 0
-            0000000000000000000000000000000000000000000000000000000000000000   | 0
-             1001101010111010011010001110111100001100111101011100001010111111  | 1
  ----------------------------------------------------------------------------- |
                100111010111101110111001001101001010010011011111100110010001110 |
-              0000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010011000010010
cquotient = 0x00000000000000000000000000002612
cquotient = x13 + x10 + x9 + x4 + x

cremainder = b00000000000000000000000000000000000000000000000000000000000000000100111010111101110111001001101001010010011011111100110010001110
cremainder = 0x00000000000000004ebddc9a526fcc8e
cremainder = x62 + x59 + x58 + x57 + x55 + x53 + x52 + x51 + x50 + x48 + x47 + x46 + x44 + x43 + x42 + x39 + x36 + x35 + x33 + x30 + x28 + x25 + x22 + x21 + x19 + x18 + x17 + x16 + x15 + x14 + x11 + x10 + x7 + x3 + x2 + x