gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000000010000000000000000
a = x64

b = b00000000000000000000000000000000000000000000000000000000000000001001101010111010011010001110111100001100111101011100001010111111
b = 0x00000000000000009aba68ef0cf5c2bf
b = x63 + x60 + x59 + x57 + x55 + x53 + x52 + x51 + x49 + x46 + x45 + x43 + x39 + x38 + x37 + x35 + x34 + x33 + x32 + x27 + x26 + x23 + x22 + x21 + x20 + x18 + x16 + x15 + x14 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000 | 1001101010111010011010001110111100001100111101011100001010111111
- 1001101010111010011010001110111100001100111101011100001010111111  | 1
  ----------------------------------------------------------------- |
     11010101110100110100011101111000011001111010111000010101111110 |
-  0000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010
cquotient = 0x00000000000000000000000000000002
cquotient = x

cremainder = b00000000000000000000000000000000000000000000000000000000000000000011010101110100110100011101111000011001111010111000010101111110
cremainder = 0x00000000000000003574d1de19eb857e
cremainder = x61 + x60 + x58 + x56 + x54 + x53 + x52 + x50 + x47 + x46 + x44 + x40 + x39 + x38 + x36 + x35 + x34 + x33 + x28 + x27 + x24 + x23 + x22 + x21 + x19 + x17 + x16 + x15 + x10 + x8 + x6 + x5 + x4 + x3 + x2 + x