gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000001000000000000000000000
a = x84

b = b00000000000000000000000000000000000000000000000000000000000000001101111001110000111011101111011111000001100011111011011110011011
b = 0x0000000000000000de70eef7c18fb79b
b = x63 + x62 + x60 + x59 + x58 + x57 + x54 + x53 + x52 + x47 + x46 + x45 + x43 + x42 + x41 + x39 + x38 + x37 + x36 + x34 + x33 + x32 + x31 + x30 + x24 + x23 + x19 + x18 + x17 + x16 + x15 + x13 + x12 + x10 + x9 + x8 + x7 + x4 + x3 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1101111001110000111011101111011111000001100011111011011110011011
- 1101111001110000111011101111011111000001100011111011011110011011                      | 1
  ------------------------------------------------------------------------------------- |
   101111001110000111011101111011111000001100011111011011110011011000000000000000000000 |
-  1101111001110000111011101111011111000001100011111011011110011011                     | 1
  ------------------------------------------------------------------------------------- |
    11000101001000100110011000110000100001010010000110110001010110100000000000000000000 |
-   1101111001110000111011101111011111000001100011111011011110011011                    | 1
  ------------------------------------------------------------------------------------- |
       11011010100101000100011000111010001001010111000000110110000010000000000000000000 |
-    0000000000000000000000000000000000000000000000000000000000000000                   | 0
-     0000000000000000000000000000000000000000000000000000000000000000                  | 0
-      1101111001110000111011101111011111000001100011111011011110011011                 | 1
  ------------------------------------------------------------------------------------- |
            100111001001010100011001101111001001111111110000001100100110000000000000000 |
-       0000000000000000000000000000000000000000000000000000000000000000                | 0
-        0000000000000000000000000000000000000000000000000000000000000000               | 0
-         0000000000000000000000000000000000000000000000000000000000000000              | 0
-          0000000000000000000000000000000000000000000000000000000000000000             | 0
-           1101111001110000111011101111011111000001100011111011011110011011            | 1
  ------------------------------------------------------------------------------------- |
             10000101110010111110111010010110101111001111111100001011111101100000000000 |
-            1101111001110000111011101111011111000001100011111011011110011011           | 1
  ------------------------------------------------------------------------------------- |
              1011011101110110000000001100001011111010111000010111100011011010000000000 |
-             1101111001110000111011101111011111000001100011111011011110011011          | 1
  ------------------------------------------------------------------------------------- |
               110100100000110111011100011010100111011011011101100111101000001000000000 |
-              1101111001110000111011101111011111000001100011111011011110011011         | 1
  ------------------------------------------------------------------------------------- |
                   11000111110100110010100111011011011101010010001010010001100100000000 |
-               0000000000000000000000000000000000000000000000000000000000000000        | 0
-                0000000000000000000000000000000000000000000000000000000000000000       | 0
-                 0000000000000000000000000000000000000000000000000000000000000000      | 0
-                  1101111001110000111011101111011111000001100011111011011110011011     | 1
  ------------------------------------------------------------------------------------- |
                      11001101000111100011100101100101101001010110100100110000010110000 |
-                   0000000000000000000000000000000000000000000000000000000000000000    | 0
-                    0000000000000000000000000000000000000000000000000000000000000000   | 0
-                     1101111001110000111011101111011111000001100011111011011110011011  | 1
  ------------------------------------------------------------------------------------- |
                         10011011011101101011110010010011001001110011010000111110000110 |
-                      0000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001110010000111100010010
cquotient = 0x00000000000000000000000000390f12
cquotient = x21 + x20 + x19 + x16 + x11 + x10 + x9 + x8 + x4 + x

cremainder = b00000000000000000000000000000000000000000000000000000000000000000010011011011101101011110010010011001001110011010000111110000110
cremainder = 0x000000000000000026ddaf24c9cd0f86
cremainder = x61 + x58 + x57 + x55 + x54 + x52 + x51 + x50 + x48 + x47 + x45 + x43 + x42 + x41 + x40 + x37 + x34 + x31 + x30 + x27 + x24 + x23 + x22 + x19 + x18 + x16 + x11 + x10 + x9 + x8 + x7 + x2 + x