gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000010000000000000000000
a = x76

b = b00000000000000000000000000000000000000000000000000000000000000001101111001110000111011101111011111000001100011111011011110011011
b = 0x0000000000000000de70eef7c18fb79b
b = x63 + x62 + x60 + x59 + x58 + x57 + x54 + x53 + x52 + x47 + x46 + x45 + x43 + x42 + x41 + x39 + x38 + x37 + x36 + x34 + x33 + x32 + x31 + x30 + x24 + x23 + x19 + x18 + x17 + x16 + x15 + x13 + x12 + x10 + x9 + x8 + x7 + x4 + x3 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000 | 1101111001110000111011101111011111000001100011111011011110011011
- 1101111001110000111011101111011111000001100011111011011110011011              | 1
  ----------------------------------------------------------------------------- |
   1011110011100001110111011110111110000011000111110110111100110110000000000000 |
-  1101111001110000111011101111011111000001100011111011011110011011             | 1
  ----------------------------------------------------------------------------- |
    110001010010001001100110001100001000010100100001101100010101101000000000000 |
-   1101111001110000111011101111011111000001100011111011011110011011            | 1
  ----------------------------------------------------------------------------- |
       110110101001010001000110001110100010010101110000001101100000100000000000 |
-    0000000000000000000000000000000000000000000000000000000000000000           | 0
-     0000000000000000000000000000000000000000000000000000000000000000          | 0
-      1101111001110000111011101111011111000001100011111011011110011011         | 1
  ----------------------------------------------------------------------------- |
            1001110010010101000110011011110010011111111100000011001001100000000 |
-       0000000000000000000000000000000000000000000000000000000000000000        | 0
-        0000000000000000000000000000000000000000000000000000000000000000       | 0
-         0000000000000000000000000000000000000000000000000000000000000000      | 0
-          0000000000000000000000000000000000000000000000000000000000000000     | 0
-           1101111001110000111011101111011111000001100011111011011110011011    | 1
  ----------------------------------------------------------------------------- |
             100001011100101111101110100101101011110011111111000010111111011000 |
-            1101111001110000111011101111011111000001100011111011011110011011   | 1
  ----------------------------------------------------------------------------- |
              10110111011101100000000011000010111110101110000101111000110110100 |
-             1101111001110000111011101111011111000001100011111011011110011011  | 1
  ----------------------------------------------------------------------------- |
               1101001000001101110111000110101001110110110111011001111010000010 |
-              1101111001110000111011101111011111000001100011111011011110011011 | 1
  ----------------------------------------------------------------------------- |
                   110001111101001100101001110110110111010100100010100100011001 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011100100001111
cquotient = 0x0000000000000000000000000000390f
cquotient = x13 + x12 + x11 + x8 + x3 + x2 + x + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000000110001111101001100101001110110110111010100100010100100011001
cremainder = 0x00000000000000000c7d329db7522919
cremainder = x59 + x58 + x54 + x53 + x52 + x51 + x50 + x48 + x45 + x44 + x41 + x39 + x36 + x35 + x34 + x32 + x31 + x29 + x28 + x26 + x25 + x24 + x22 + x20 + x17 + x13 + x11 + x8 + x4 + x3 + 1