gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000
a = 0x00000000000000010000000000000000
a = x64

b = b00000000000000000000000000000000000000000000000000000000000000001101111001110000111011101111011111000001100011111011011110011011
b = 0x0000000000000000de70eef7c18fb79b
b = x63 + x62 + x60 + x59 + x58 + x57 + x54 + x53 + x52 + x47 + x46 + x45 + x43 + x42 + x41 + x39 + x38 + x37 + x36 + x34 + x33 + x32 + x31 + x30 + x24 + x23 + x19 + x18 + x17 + x16 + x15 + x13 + x12 + x10 + x9 + x8 + x7 + x4 + x3 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000 | 1101111001110000111011101111011111000001100011111011011110011011
- 1101111001110000111011101111011111000001100011111011011110011011  | 1
  ----------------------------------------------------------------- |
   1011110011100001110111011110111110000011000111110110111100110110 |
-  1101111001110000111011101111011111000001100011111011011110011011 | 1
  ----------------------------------------------------------------- |
    110001010010001001100110001100001000010100100001101100010101101 |

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011
cquotient = 0x00000000000000000000000000000003
cquotient = x + 1

cremainder = b00000000000000000000000000000000000000000000000000000000000000000110001010010001001100110001100001000010100100001101100010101101
cremainder = 0x0000000000000000629133184290d8ad
cremainder = x62 + x61 + x57 + x55 + x52 + x48 + x45 + x44 + x41 + x40 + x36 + x35 + x30 + x25 + x23 + x20 + x15 + x14 + x12 + x11 + x7 + x5 + x3 + x2 + 1