gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b00000001101001010111001101001000001110111000011011011000000110010010010101100111101100100011010101010111001111110110111100011111
a = 0x01a573483b86d8192567b235573f6f1f
a = x120 + x119 + x117 + x114 + x112 + x110 + x109 + x108 + x105 + x104 + x102 + x99 + x93 + x92 + x91 + x89 + x88 + x87 + x82 + x81 + x79 + x78 + x76 + x75 + x68 + x67 + x64 + x61 + x58 + x56 + x54 + x53 + x50 + x49 + x48 + x47 + x45 + x44 + x41 + x37 + x36 + x34 + x32 + x30 + x28 + x26 + x25 + x24 + x21 + x20 + x19 + x18 + x17 + x16 + x14 + x13 + x11 + x10 + x9 + x8 + x4 + x3 + x2 + x + 1

b = b00000000000111010010110001101111010011000001010111101011001001001110010010111111001100110111000100001001001111100100101000001000
b = 0x001d2c6f4c15eb24e4bf3371093e4a08
b = x116 + x115 + x114 + x112 + x109 + x107 + x106 + x102 + x101 + x99 + x98 + x97 + x96 + x94 + x91 + x90 + x84 + x82 + x80 + x79 + x78 + x77 + x75 + x73 + x72 + x69 + x66 + x63 + x62 + x61 + x58 + x55 + x53 + x52 + x51 + x50 + x49 + x48 + x45 + x44 + x41 + x40 + x38 + x37 + x36 + x32 + x27 + x24 + x21 + x20 + x19 + x18 + x17 + x14 + x11 + x9 + x3

  1101001010111001101001000001110111000011011011000000110010010010101100111101100100011010101010111001111110110111100011111 | 111010010110001101111010011000001010111101011001001001110010010111111001100110111000100001001001111100100101000001000
- 111010010110001101111010011000001010111101011001001001110010010111111001100110111000100001001001111100100101000001000     | 1
  ------------------------------------------------------------------------------------------------------------------------- |
    11101111011010110111100111110101101100001101010010101110110111010010100100001010010010111000100110110111100111110011111 |
-  000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000    | 0
-   111010010110001101111010011000001010111101011001001001110010010111111001100110111000100001001001111100100101000001000   | 1
  ------------------------------------------------------------------------------------------------------------------------- |
         110000010000000001110010101000111111000110110001001111110001101000010010001110000111100000001000101110011110111111 |
-    000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000  | 0
-     000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010100
cquotient = 0x00000000000000000000000000000014
cquotient = x4 + x2

cremainder = b00000000000000110000010000000001110010101000111111000110110001001111110001101000010010001110000111100000001000101110011110111111
cremainder = 0x00030401ca8fc6c4fc6848e1e022e7bf
cremainder = x113 + x112 + x106 + x96 + x95 + x94 + x91 + x89 + x87 + x83 + x82 + x81 + x80 + x79 + x78 + x74 + x73 + x71 + x70 + x66 + x63 + x62 + x61 + x60 + x59 + x58 + x54 + x53 + x51 + x46 + x43 + x39 + x38 + x37 + x32 + x31 + x30 + x29 + x21 + x17 + x15 + x14 + x13 + x10 + x9 + x8 + x7 + x5 + x4 + x3 + x2 + x + 1