gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x0000000000000000000000000000040000000000000000000000000000000000
a = x138

b = b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001
b = 0x0000000000000000000000000000000065ee6bda0b324559661859ebf3268b49
b = x126 + x125 + x122 + x120 + x119 + x118 + x117 + x115 + x114 + x113 + x110 + x109 + x107 + x105 + x104 + x103 + x102 + x100 + x99 + x97 + x91 + x89 + x88 + x85 + x84 + x81 + x78 + x74 + x72 + x70 + x68 + x67 + x64 + x62 + x61 + x58 + x57 + x52 + x51 + x46 + x44 + x43 + x40 + x39 + x38 + x37 + x35 + x33 + x32 + x31 + x30 + x29 + x28 + x25 + x24 + x21 + x18 + x17 + x15 + x11 + x9 + x8 + x6 + x3 + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001
- 1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001             | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
   100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001000000000000 |
-  1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001            | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
    10111000110010101111000110111000011101010101101100111111101011101010100010100011101010001111000001010101101011100111011101101100000000000 |
-   1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001           | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
     1110011000101100010011000001100011000110011111110110101000111000110010010010011000110110010011110110011111000110110000111111110000000000 |
-    1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001          | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
       10110111110000100110111010110011010000000110111110000010001010000001010001011010000101100110001000000110001011110101010110111000000000 |
-     0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000         | 0
-      1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001        | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
        1111100000111101011100100000111010101100000101100001000100110101101100001101010101001011011010111100000011000100100001100101010000000 |
-       1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001       | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
          11001111100001101001011011101010111010011100101001101110000111011111001110010111111000101111000010011010001001100100001100011000000 |
-        0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000      | 0
-         1100101111011100110101111011010000010110011001001000101010110010110011000011000010110011110101111110011001001101000101101001001     | 1
  ------------------------------------------------------------------------------------------------------------------------------------------- |
               100010110100100000101011110111111111010111011100100101011110011111110100111010100010010011101111100011010110101010110001010000 |
-          0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000    | 0
-           0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000   | 0
-            0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000  | 0
-             0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 0

cquotient = b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111011010000
cquotient = 0x0000000000000000000000000000000000000000000000000000000000001ed0
cquotient = x12 + x11 + x10 + x9 + x7 + x6 + x4

cremainder = b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100010110100100000101011110111111111010111011100100101011110011111110100111010100010010011101111100011010110101010110001010000
cremainder = 0x0000000000000000000000000000000022d20af7fd772579fd3a893be35aac50
cremainder = x125 + x121 + x119 + x118 + x116 + x113 + x107 + x105 + x103 + x102 + x101 + x100 + x98 + x97 + x96 + x95 + x94 + x93 + x92 + x91 + x90 + x88 + x86 + x85 + x84 + x82 + x81 + x80 + x77 + x74 + x72 + x70 + x69 + x68 + x67 + x64 + x63 + x62 + x61 + x60 + x59 + x58 + x56 + x53 + x52 + x51 + x49 + x47 + x43 + x40 + x37 + x36 + x35 + x33 + x32 + x31 + x30 + x29 + x25 + x24 + x22 + x20 + x19 + x17 + x15 + x13 + x11 + x10 + x6 + x4