gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000000000000000000100000000000000000000000000000000
a = 0x0000000100000000
a = x32

b = b0000000000000000000000000000000000000000000001101010101111101101
b = 0x000000000006abed
b = x18 + x17 + x15 + x13 + x11 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1

  100000000000000000000000000000000 | 1101010101111101101
- 1101010101111101101               | 1
  --------------------------------- |
   10101010111110110100000000000000 |
-  1101010101111101101              | 1
  --------------------------------- |
    1111111100001101110000000000000 |
-   1101010101111101101             | 1
  --------------------------------- |
      10101001110000011000000000000 |
-    0000000000000000000            | 0
-     1101010101111101101           | 1
  --------------------------------- |
       1111100101111000010000000000 |
-      1101010101111101101          | 1
  --------------------------------- |
         10110000000101111000000000 |
-       0000000000000000000         | 0
-        1101010101111101101        | 1
  --------------------------------- |
          1100101011010100010000000 |
-         1101010101111101101       | 1
  --------------------------------- |
             1111110101001111000000 |
-          0000000000000000000      | 0
-           0000000000000000000     | 0
-            1101010101111101101    | 1
  --------------------------------- |
               10100000110010101000 |
-             0000000000000000000   | 0
-              1101010101111101101  | 1
  --------------------------------- |
                1110101101101110010 |
-               1101010101111101101 | 1
  --------------------------------- |
                  11111000010011111 |

cquotient = b0000000000000000000000000000000000000000000000000111011011001011
cquotient = 0x00000000000076cb
cquotient = x14 + x13 + x12 + x10 + x9 + x7 + x6 + x3 + x + 1

cremainder = b0000000000000000000000000000000000000000000000011111000010011111
cremainder = 0x000000000001f09f
cremainder = x16 + x15 + x14 + x13 + x12 + x7 + x4 + x3 + x2 + x + 1