gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000111101111101100100100100100111111111001100111111
a = 0x0000f7d9249ff33f
a = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

b = b0000000000000000001000101010001100101010101101010001000010010010
b = 0x000022a32ab51092
b = x45 + x41 + x39 + x37 + x33 + x32 + x29 + x27 + x25 + x23 + x21 + x20 + x18 + x16 + x12 + x7 + x4 + x

  111101111101100100100100100111111111001100111111 | 1000101010001100101010101101010001000010010010
- 1000101010001100101010101101010001000010010010   | 1
  ------------------------------------------------ |
   11111010101010110001110010010111011000101110111 |
-  1000101010001100101010101101010001000010010010  | 1
  ------------------------------------------------ |
    1110000001001111011011001000011001000001010011 |
-   1000101010001100101010101101010001000010010010 | 1
  ------------------------------------------------ |
     110101011000011110001100101001000000011000001 |

cquotient = b0000000000000000000000000000000000000000000000000000000000000111
cquotient = 0x0000000000000007
cquotient = x2 + x + 1

cremainder = b0000000000000000000110101011000011110001100101001000000011000001
cremainder = 0x00001ab0f19480c1
cremainder = x44 + x43 + x41 + x39 + x37 + x36 + x31 + x30 + x29 + x28 + x24 + x23 + x20 + x18 + x15 + x7 + x6 + 1