gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b0000000000000000000000001100011101000000110100011000111010101111
a = 0x000000c740d18eaf
a = x39 + x38 + x34 + x33 + x32 + x30 + x23 + x22 + x20 + x16 + x15 + x11 + x10 + x9 + x7 + x5 + x3 + x2 + x + 1

b = b0000000000000000000000000000000000000000000000000000000101000011
b = 0x0000000000000143
b = x8 + x6 + x + 1

  1100011101000000110100011000111010101111 | 101000011
- 101000011                                | 1
  ---------------------------------------- |
   110011011000000110100011000111010101111 |
-  101000011                               | 1
  ---------------------------------------- |
    11011000000000110100011000111010101111 |
-   101000011                              | 1
  ---------------------------------------- |
     1111001100000110100011000111010101111 |
-    101000011                             | 1
  ---------------------------------------- |
      101001010000110100011000111010101111 |
-     101000011                            | 1
  ---------------------------------------- |
           1001000110100011000111010101111 |
-      000000000                           | 0
-       000000000                          | 0
-        000000000                         | 0
-         000000000                        | 0
-          101000011                       | 1
  ---------------------------------------- |
             11000000100011000111010101111 |
-           000000000                      | 0
-            101000011                     | 1
  ---------------------------------------- |
              1100001000011000111010101111 |
-             101000011                    | 1
  ---------------------------------------- |
               110001110011000111010101111 |
-              101000011                   | 1
  ---------------------------------------- |
                11001101011000111010101111 |
-               101000011                  | 1
  ---------------------------------------- |
                 1101100111000111010101111 |
-                101000011                 | 1
  ---------------------------------------- |
                  111100001000111010101111 |
-                 101000011                | 1
  ---------------------------------------- |
                   10100010000111010101111 |
-                  101000011               | 1
  ---------------------------------------- |
                         11100111010101111 |
-                   000000000              | 0
-                    000000000             | 0
-                     000000000            | 0
-                      000000000           | 0
-                       000000000          | 0
-                        101000011         | 1
  ---------------------------------------- |
                          1000110110101111 |
-                         101000011        | 1
  ---------------------------------------- |
                            10110000101111 |
-                          000000000       | 0
-                           101000011      | 1
  ---------------------------------------- |
                               10001001111 |
-                            000000000     | 0
-                             000000000    | 0
-                              101000011   | 1
  ---------------------------------------- |
                                 101000011 |
-                               000000000  | 0
-                                101000011 | 1
  ---------------------------------------- |
                                         0 |

cquotient = b0000000000000000000000000000000011111000010111111100000110100101
cquotient = 0x00000000f85fc1a5
cquotient = x31 + x30 + x29 + x28 + x27 + x22 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x8 + x7 + x5 + x2 + 1

cremainder = b0000000000000000000000000000000000000000000000000000000000000000
cremainder = 0x0000000000000000
cremainder = 0