gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x000010000000000000000000
a = x76

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                              | 1
  ----------------------------------------------------------------------------- |
   1110111110110010010010010011111111100110011111100000000000000000000000000000 |
-  111101111101100100100100100111111111001100111111                             | 1
  ----------------------------------------------------------------------------- |
      1100001101011011011011010000000010101010000010000000000000000000000000000 |
-   000000000000000000000000000000000000000000000000                            | 0
-    000000000000000000000000000000000000000000000000                           | 0
-     111101111101100100100100100111111111001100111111                          | 1
  ----------------------------------------------------------------------------- |
        11010010000010010010011001111101011001001101110000000000000000000000000 |
-      000000000000000000000000000000000000000000000000                         | 0
-       111101111101100100100100100111111111001100111111                        | 1
  ----------------------------------------------------------------------------- |
          100101110100000000001011100010100101111110001100000000000000000000000 |
-        000000000000000000000000000000000000000000000000                       | 0
-         111101111101100100100100100111111111001100111111                      | 1
  ----------------------------------------------------------------------------- |
           11000001001100100101111000101011010110010110011000000000000000000000 |
-          111101111101100100100100100111111111001100111111                     | 1
  ----------------------------------------------------------------------------- |
             110110111010110111101010110100101010100101100100000000000000000000 |
-           000000000000000000000000000000000000000000000000                    | 0
-            111101111101100100100100100111111111001100111111                   | 1
  ----------------------------------------------------------------------------- |
               1011000111010011001110010011010101101001011011000000000000000000 |
-             000000000000000000000000000000000000000000000000                  | 0
-              111101111101100100100100100111111111001100111111                 | 1
  ----------------------------------------------------------------------------- |
                100011000001010000111011010101010011010010100110000000000000000 |
-               111101111101100100100100100111111111001100111111                | 1
  ----------------------------------------------------------------------------- |
                 11110111100110100011111110010101100011110011001000000000000000 |
-                111101111101100100100100100111111111001100111111               | 1
  ----------------------------------------------------------------------------- |
                          10000110001101100001010011111000000110100000000000000 |
-                 000000000000000000000000000000000000000000000000              | 0
-                  000000000000000000000000000000000000000000000000             | 0
-                   000000000000000000000000000000000000000000000000            | 0
-                    000000000000000000000000000000000000000000000000           | 0
-                     000000000000000000000000000000000000000000000000          | 0
-                      000000000000000000000000000000000000000000000000         | 0
-                       000000000000000000000000000000000000000000000000        | 0
-                        000000000000000000000000000000000000000000000000       | 0
-                         111101111101100100100100100111111111001100111111      | 1
  ----------------------------------------------------------------------------- |
                           1110001111011110011000001100111111010010011111100000 |
-                          111101111101100100100100100111111111001100111111     | 1
  ----------------------------------------------------------------------------- |
                              1010000000111010001000101000000100001010000010000 |
-                           000000000000000000000000000000000000000000000000    | 0
-                            000000000000000000000000000000000000000000000000   | 0
-                             111101111101100100100100100111111111001100111111  | 1
  ----------------------------------------------------------------------------- |
                               101011111100011000001100001111011111001001101110 |
-                              111101111101100100100100100111111111001100111111 | 1
  ----------------------------------------------------------------------------- |
                                10110000001111100101000101000100000000101010001 |

cquotient = b000000000000000000000000000000000000000000000000000000000000000000110010101101011100000000110011
cquotient = 0x000000000000000032b5c033
cquotient = x29 + x28 + x25 + x23 + x21 + x20 + x18 + x16 + x15 + x14 + x5 + x4 + x + 1

cremainder = b000000000000000000000000000000000000000000000000010110000001111100101000101000100000000101010001
cremainder = 0x000000000000581f28a20151
cremainder = x46 + x44 + x43 + x36 + x35 + x34 + x33 + x32 + x29 + x27 + x23 + x21 + x17 + x8 + x6 + x4 + 1