gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x000004000000000000000000
a = x74

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                            | 1
  --------------------------------------------------------------------------- |
   11101111101100100100100100111111111001100111111000000000000000000000000000 |
-  111101111101100100100100100111111111001100111111                           | 1
  --------------------------------------------------------------------------- |
      11000011010110110110110100000000101010100000100000000000000000000000000 |
-   000000000000000000000000000000000000000000000000                          | 0
-    000000000000000000000000000000000000000000000000                         | 0
-     111101111101100100100100100111111111001100111111                        | 1
  --------------------------------------------------------------------------- |
        110100100000100100100110011111010110010011011100000000000000000000000 |
-      000000000000000000000000000000000000000000000000                       | 0
-       111101111101100100100100100111111111001100111111                      | 1
  --------------------------------------------------------------------------- |
          1001011101000000000010111000101001011111100011000000000000000000000 |
-        000000000000000000000000000000000000000000000000                     | 0
-         111101111101100100100100100111111111001100111111                    | 1
  --------------------------------------------------------------------------- |
           110000010011001001011110001010110101100101100110000000000000000000 |
-          111101111101100100100100100111111111001100111111                   | 1
  --------------------------------------------------------------------------- |
             1101101110101101111010101101001010101001011001000000000000000000 |
-           000000000000000000000000000000000000000000000000                  | 0
-            111101111101100100100100100111111111001100111111                 | 1
  --------------------------------------------------------------------------- |
               10110001110100110011100100110101011010010110110000000000000000 |
-             000000000000000000000000000000000000000000000000                | 0
-              111101111101100100100100100111111111001100111111               | 1
  --------------------------------------------------------------------------- |
                1000110000010100001110110101010100110100101001100000000000000 |
-               111101111101100100100100100111111111001100111111              | 1
  --------------------------------------------------------------------------- |
                 111101111001101000111111100101011000111100110010000000000000 |
-                111101111101100100100100100111111111001100111111             | 1
  --------------------------------------------------------------------------- |
                          100001100011011000010100111110000001101000000000000 |
-                 000000000000000000000000000000000000000000000000            | 0
-                  000000000000000000000000000000000000000000000000           | 0
-                   000000000000000000000000000000000000000000000000          | 0
-                    000000000000000000000000000000000000000000000000         | 0
-                     000000000000000000000000000000000000000000000000        | 0
-                      000000000000000000000000000000000000000000000000       | 0
-                       000000000000000000000000000000000000000000000000      | 0
-                        000000000000000000000000000000000000000000000000     | 0
-                         111101111101100100100100100111111111001100111111    | 1
  --------------------------------------------------------------------------- |
                           11100011110111100110000011001111110100100111111000 |
-                          111101111101100100100100100111111111001100111111   | 1
  --------------------------------------------------------------------------- |
                              10100000001110100010001010000001000010100000100 |
-                           000000000000000000000000000000000000000000000000  | 0
-                            000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000001100101011010111000000001100
cquotient = 0x00000000000000000cad700c
cquotient = x27 + x26 + x23 + x21 + x19 + x18 + x16 + x14 + x13 + x12 + x3 + x2

cremainder = b000000000000000000000000000000000000000000000000010100000001110100010001010000001000010100000100
cremainder = 0x000000000000501d11408504
cremainder = x46 + x44 + x36 + x35 + x34 + x32 + x28 + x24 + x22 + x15 + x10 + x8 + x2