gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000
a = 0x000001000000000000000000
a = x72

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                          | 1
  ------------------------------------------------------------------------- |
   111011111011001001001001001111111110011001111110000000000000000000000000 |
-  111101111101100100100100100111111111001100111111                         | 1
  ------------------------------------------------------------------------- |
      110000110101101101101101000000001010101000001000000000000000000000000 |
-   000000000000000000000000000000000000000000000000                        | 0
-    000000000000000000000000000000000000000000000000                       | 0
-     111101111101100100100100100111111111001100111111                      | 1
  ------------------------------------------------------------------------- |
        1101001000001001001001100111110101100100110111000000000000000000000 |
-      000000000000000000000000000000000000000000000000                     | 0
-       111101111101100100100100100111111111001100111111                    | 1
  ------------------------------------------------------------------------- |
          10010111010000000000101110001010010111111000110000000000000000000 |
-        000000000000000000000000000000000000000000000000                   | 0
-         111101111101100100100100100111111111001100111111                  | 1
  ------------------------------------------------------------------------- |
           1100000100110010010111100010101101011001011001100000000000000000 |
-          111101111101100100100100100111111111001100111111                 | 1
  ------------------------------------------------------------------------- |
             11011011101011011110101011010010101010010110010000000000000000 |
-           000000000000000000000000000000000000000000000000                | 0
-            111101111101100100100100100111111111001100111111               | 1
  ------------------------------------------------------------------------- |
               101100011101001100111001001101010110100101101100000000000000 |
-             000000000000000000000000000000000000000000000000              | 0
-              111101111101100100100100100111111111001100111111             | 1
  ------------------------------------------------------------------------- |
                10001100000101000011101101010101001101001010011000000000000 |
-               111101111101100100100100100111111111001100111111            | 1
  ------------------------------------------------------------------------- |
                 1111011110011010001111111001010110001111001100100000000000 |
-                111101111101100100100100100111111111001100111111           | 1
  ------------------------------------------------------------------------- |
                          1000011000110110000101001111100000011010000000000 |
-                 000000000000000000000000000000000000000000000000          | 0
-                  000000000000000000000000000000000000000000000000         | 0
-                   000000000000000000000000000000000000000000000000        | 0
-                    000000000000000000000000000000000000000000000000       | 0
-                     000000000000000000000000000000000000000000000000      | 0
-                      000000000000000000000000000000000000000000000000     | 0
-                       000000000000000000000000000000000000000000000000    | 0
-                        000000000000000000000000000000000000000000000000   | 0
-                         111101111101100100100100100111111111001100111111  | 1
  ------------------------------------------------------------------------- |
                           111000111101111001100000110011111101001001111110 |
-                          111101111101100100100100100111111111001100111111 | 1
  ------------------------------------------------------------------------- |
                              101000000011101000100010100000010000101000001 |

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000011001010110101110000000011
cquotient = 0x0000000000000000032b5c03
cquotient = x25 + x24 + x21 + x19 + x17 + x16 + x14 + x12 + x11 + x10 + x + 1

cremainder = b000000000000000000000000000000000000000000000000000101000000011101000100010100000010000101000001
cremainder = 0x000000000000140744502141
cremainder = x44 + x42 + x34 + x33 + x32 + x30 + x26 + x22 + x20 + x13 + x8 + x6 + 1