gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000
a = 0x000000100000000000000000
a = x68

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                      | 1
  --------------------------------------------------------------------- |
   11101111101100100100100100111111111001100111111000000000000000000000 |
-  111101111101100100100100100111111111001100111111                     | 1
  --------------------------------------------------------------------- |
      11000011010110110110110100000000101010100000100000000000000000000 |
-   000000000000000000000000000000000000000000000000                    | 0
-    000000000000000000000000000000000000000000000000                   | 0
-     111101111101100100100100100111111111001100111111                  | 1
  --------------------------------------------------------------------- |
        110100100000100100100110011111010110010011011100000000000000000 |
-      000000000000000000000000000000000000000000000000                 | 0
-       111101111101100100100100100111111111001100111111                | 1
  --------------------------------------------------------------------- |
          1001011101000000000010111000101001011111100011000000000000000 |
-        000000000000000000000000000000000000000000000000               | 0
-         111101111101100100100100100111111111001100111111              | 1
  --------------------------------------------------------------------- |
           110000010011001001011110001010110101100101100110000000000000 |
-          111101111101100100100100100111111111001100111111             | 1
  --------------------------------------------------------------------- |
             1101101110101101111010101101001010101001011001000000000000 |
-           000000000000000000000000000000000000000000000000            | 0
-            111101111101100100100100100111111111001100111111           | 1
  --------------------------------------------------------------------- |
               10110001110100110011100100110101011010010110110000000000 |
-             000000000000000000000000000000000000000000000000          | 0
-              111101111101100100100100100111111111001100111111         | 1
  --------------------------------------------------------------------- |
                1000110000010100001110110101010100110100101001100000000 |
-               111101111101100100100100100111111111001100111111        | 1
  --------------------------------------------------------------------- |
                 111101111001101000111111100101011000111100110010000000 |
-                111101111101100100100100100111111111001100111111       | 1
  --------------------------------------------------------------------- |
                          100001100011011000010100111110000001101000000 |
-                 000000000000000000000000000000000000000000000000      | 0
-                  000000000000000000000000000000000000000000000000     | 0
-                   000000000000000000000000000000000000000000000000    | 0
-                    000000000000000000000000000000000000000000000000   | 0
-                     000000000000000000000000000000000000000000000000  | 0
-                      000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000001100101011010111000000
cquotient = 0x00000000000000000032b5c0
cquotient = x21 + x20 + x17 + x15 + x13 + x12 + x10 + x8 + x7 + x6

cremainder = b000000000000000000000000000000000000000000000000000100001100011011000010100111110000001101000000
cremainder = 0x00000000000010c6c29f0340
cremainder = x44 + x39 + x38 + x34 + x33 + x31 + x30 + x25 + x23 + x20 + x19 + x18 + x17 + x16 + x9 + x8 + x6