gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000
a = 0x000000040000000000000000
a = x66

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                    | 1
  ------------------------------------------------------------------- |
   111011111011001001001001001111111110011001111110000000000000000000 |
-  111101111101100100100100100111111111001100111111                   | 1
  ------------------------------------------------------------------- |
      110000110101101101101101000000001010101000001000000000000000000 |
-   000000000000000000000000000000000000000000000000                  | 0
-    000000000000000000000000000000000000000000000000                 | 0
-     111101111101100100100100100111111111001100111111                | 1
  ------------------------------------------------------------------- |
        1101001000001001001001100111110101100100110111000000000000000 |
-      000000000000000000000000000000000000000000000000               | 0
-       111101111101100100100100100111111111001100111111              | 1
  ------------------------------------------------------------------- |
          10010111010000000000101110001010010111111000110000000000000 |
-        000000000000000000000000000000000000000000000000             | 0
-         111101111101100100100100100111111111001100111111            | 1
  ------------------------------------------------------------------- |
           1100000100110010010111100010101101011001011001100000000000 |
-          111101111101100100100100100111111111001100111111           | 1
  ------------------------------------------------------------------- |
             11011011101011011110101011010010101010010110010000000000 |
-           000000000000000000000000000000000000000000000000          | 0
-            111101111101100100100100100111111111001100111111         | 1
  ------------------------------------------------------------------- |
               101100011101001100111001001101010110100101101100000000 |
-             000000000000000000000000000000000000000000000000        | 0
-              111101111101100100100100100111111111001100111111       | 1
  ------------------------------------------------------------------- |
                10001100000101000011101101010101001101001010011000000 |
-               111101111101100100100100100111111111001100111111      | 1
  ------------------------------------------------------------------- |
                 1111011110011010001111111001010110001111001100100000 |
-                111101111101100100100100100111111111001100111111     | 1
  ------------------------------------------------------------------- |
                          1000011000110110000101001111100000011010000 |
-                 000000000000000000000000000000000000000000000000    | 0
-                  000000000000000000000000000000000000000000000000   | 0
-                   000000000000000000000000000000000000000000000000  | 0
-                    000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000011001010110101110000
cquotient = 0x0000000000000000000cad70
cquotient = x19 + x18 + x15 + x13 + x11 + x10 + x8 + x6 + x5 + x4

cremainder = b000000000000000000000000000000000000000000000000000001000011000110110000101001111100000011010000
cremainder = 0x0000000000000431b0a7c0d0
cremainder = x42 + x37 + x36 + x32 + x31 + x29 + x28 + x23 + x21 + x18 + x17 + x16 + x15 + x14 + x7 + x6 + x4