gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000
a = 0x000000010000000000000000
a = x64

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                  | 1
  ----------------------------------------------------------------- |
   1110111110110010010010010011111111100110011111100000000000000000 |
-  111101111101100100100100100111111111001100111111                 | 1
  ----------------------------------------------------------------- |
      1100001101011011011011010000000010101010000010000000000000000 |
-   000000000000000000000000000000000000000000000000                | 0
-    000000000000000000000000000000000000000000000000               | 0
-     111101111101100100100100100111111111001100111111              | 1
  ----------------------------------------------------------------- |
        11010010000010010010011001111101011001001101110000000000000 |
-      000000000000000000000000000000000000000000000000             | 0
-       111101111101100100100100100111111111001100111111            | 1
  ----------------------------------------------------------------- |
          100101110100000000001011100010100101111110001100000000000 |
-        000000000000000000000000000000000000000000000000           | 0
-         111101111101100100100100100111111111001100111111          | 1
  ----------------------------------------------------------------- |
           11000001001100100101111000101011010110010110011000000000 |
-          111101111101100100100100100111111111001100111111         | 1
  ----------------------------------------------------------------- |
             110110111010110111101010110100101010100101100100000000 |
-           000000000000000000000000000000000000000000000000        | 0
-            111101111101100100100100100111111111001100111111       | 1
  ----------------------------------------------------------------- |
               1011000111010011001110010011010101101001011011000000 |
-             000000000000000000000000000000000000000000000000      | 0
-              111101111101100100100100100111111111001100111111     | 1
  ----------------------------------------------------------------- |
                100011000001010000111011010101010011010010100110000 |
-               111101111101100100100100100111111111001100111111    | 1
  ----------------------------------------------------------------- |
                 11110111100110100011111110010101100011110011001000 |
-                111101111101100100100100100111111111001100111111   | 1
  ----------------------------------------------------------------- |
                          10000110001101100001010011111000000110100 |
-                 000000000000000000000000000000000000000000000000  | 0
-                  000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000000110010101101011100
cquotient = 0x000000000000000000032b5c
cquotient = x17 + x16 + x13 + x11 + x9 + x8 + x6 + x4 + x3 + x2

cremainder = b000000000000000000000000000000000000000000000000000000010000110001101100001010011111000000110100
cremainder = 0x000000000000010c6c29f034
cremainder = x40 + x35 + x34 + x30 + x29 + x27 + x26 + x21 + x19 + x16 + x15 + x14 + x13 + x12 + x5 + x4 + x2