gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000
a = 0x000000004000000000000000
a = x62

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  100000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111                | 1
  --------------------------------------------------------------- |
   11101111101100100100100100111111111001100111111000000000000000 |
-  111101111101100100100100100111111111001100111111               | 1
  --------------------------------------------------------------- |
      11000011010110110110110100000000101010100000100000000000000 |
-   000000000000000000000000000000000000000000000000              | 0
-    000000000000000000000000000000000000000000000000             | 0
-     111101111101100100100100100111111111001100111111            | 1
  --------------------------------------------------------------- |
        110100100000100100100110011111010110010011011100000000000 |
-      000000000000000000000000000000000000000000000000           | 0
-       111101111101100100100100100111111111001100111111          | 1
  --------------------------------------------------------------- |
          1001011101000000000010111000101001011111100011000000000 |
-        000000000000000000000000000000000000000000000000         | 0
-         111101111101100100100100100111111111001100111111        | 1
  --------------------------------------------------------------- |
           110000010011001001011110001010110101100101100110000000 |
-          111101111101100100100100100111111111001100111111       | 1
  --------------------------------------------------------------- |
             1101101110101101111010101101001010101001011001000000 |
-           000000000000000000000000000000000000000000000000      | 0
-            111101111101100100100100100111111111001100111111     | 1
  --------------------------------------------------------------- |
               10110001110100110011100100110101011010010110110000 |
-             000000000000000000000000000000000000000000000000    | 0
-              111101111101100100100100100111111111001100111111   | 1
  --------------------------------------------------------------- |
                1000110000010100001110110101010100110100101001100 |
-               111101111101100100100100100111111111001100111111  | 1
  --------------------------------------------------------------- |
                 111101111001101000111111100101011000111100110010 |
-                111101111101100100100100100111111111001100111111 | 1
  --------------------------------------------------------------- |
                          100001100011011000010100111110000001101 |

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000000001100101011010111
cquotient = 0x00000000000000000000cad7
cquotient = x15 + x14 + x11 + x9 + x7 + x6 + x4 + x2 + x + 1

cremainder = b000000000000000000000000000000000000000000000000000000000100001100011011000010100111110000001101
cremainder = 0x00000000000000431b0a7c0d
cremainder = x38 + x33 + x32 + x28 + x27 + x25 + x24 + x19 + x17 + x14 + x13 + x12 + x11 + x10 + x3 + x2 + 1