gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000
a = 0x000000001000000000000000
a = x60

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111              | 1
  ------------------------------------------------------------- |
   111011111011001001001001001111111110011001111110000000000000 |
-  111101111101100100100100100111111111001100111111             | 1
  ------------------------------------------------------------- |
      110000110101101101101101000000001010101000001000000000000 |
-   000000000000000000000000000000000000000000000000            | 0
-    000000000000000000000000000000000000000000000000           | 0
-     111101111101100100100100100111111111001100111111          | 1
  ------------------------------------------------------------- |
        1101001000001001001001100111110101100100110111000000000 |
-      000000000000000000000000000000000000000000000000         | 0
-       111101111101100100100100100111111111001100111111        | 1
  ------------------------------------------------------------- |
          10010111010000000000101110001010010111111000110000000 |
-        000000000000000000000000000000000000000000000000       | 0
-         111101111101100100100100100111111111001100111111      | 1
  ------------------------------------------------------------- |
           1100000100110010010111100010101101011001011001100000 |
-          111101111101100100100100100111111111001100111111     | 1
  ------------------------------------------------------------- |
             11011011101011011110101011010010101010010110010000 |
-           000000000000000000000000000000000000000000000000    | 0
-            111101111101100100100100100111111111001100111111   | 1
  ------------------------------------------------------------- |
               101100011101001100111001001101010110100101101100 |
-             000000000000000000000000000000000000000000000000  | 0
-              111101111101100100100100100111111111001100111111 | 1
  ------------------------------------------------------------- |
                10001100000101000011101101010101001101001010011 |

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000000000011001010110101
cquotient = 0x0000000000000000000032b5
cquotient = x13 + x12 + x9 + x7 + x5 + x4 + x2 + 1

cremainder = b000000000000000000000000000000000000000000000000010001100000101000011101101010101001101001010011
cremainder = 0x000000000000460a1daa9a53
cremainder = x46 + x42 + x41 + x35 + x33 + x28 + x27 + x26 + x24 + x23 + x21 + x19 + x17 + x15 + x12 + x11 + x9 + x6 + x4 + x + 1