gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000
a = 0x000000000040000000000000
a = x54

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  1000000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111        | 1
  ------------------------------------------------------- |
   111011111011001001001001001111111110011001111110000000 |
-  111101111101100100100100100111111111001100111111       | 1
  ------------------------------------------------------- |
      110000110101101101101101000000001010101000001000000 |
-   000000000000000000000000000000000000000000000000      | 0
-    000000000000000000000000000000000000000000000000     | 0
-     111101111101100100100100100111111111001100111111    | 1
  ------------------------------------------------------- |
        1101001000001001001001100111110101100100110111000 |
-      000000000000000000000000000000000000000000000000   | 0
-       111101111101100100100100100111111111001100111111  | 1
  ------------------------------------------------------- |
          10010111010000000000101110001010010111111000110 |
-        000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011001010
cquotient = 0x0000000000000000000000ca
cquotient = x7 + x6 + x3 + x

cremainder = b000000000000000000000000000000000000000000000000010010111010000000000101110001010010111111000110
cremainder = 0x0000000000004ba005c52fc6
cremainder = x46 + x43 + x41 + x40 + x39 + x37 + x26 + x24 + x23 + x22 + x18 + x16 + x13 + x11 + x10 + x9 + x8 + x7 + x6 + x2 + x