gf(2) mod

c = a % b

Calculate c = a/b, result is cremainder

gf(2) Polynomial long division

c = a/b

a = b000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000
a = 0x000000000010000000000000
a = x52

b = b000000000000000000000000000000000000000000000000111101111101100100100100100111111111001100111111
b = 0x000000000000f7d9249ff33f
b = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

  10000000000000000000000000000000000000000000000000000 | 111101111101100100100100100111111111001100111111
- 111101111101100100100100100111111111001100111111      | 1
  ----------------------------------------------------- |
   1110111110110010010010010011111111100110011111100000 |
-  111101111101100100100100100111111111001100111111     | 1
  ----------------------------------------------------- |
      1100001101011011011011010000000010101010000010000 |
-   000000000000000000000000000000000000000000000000    | 0
-    000000000000000000000000000000000000000000000000   | 0
-     111101111101100100100100100111111111001100111111  | 1
  ----------------------------------------------------- |
        11010010000010010010011001111101011001001101110 |
-      000000000000000000000000000000000000000000000000 | 0

cquotient = b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110010
cquotient = 0x000000000000000000000032
cquotient = x5 + x4 + x

cremainder = b000000000000000000000000000000000000000000000000011010010000010010010011001111101011001001101110
cremainder = 0x0000000000006904933eb26e
cremainder = x46 + x45 + x43 + x40 + x34 + x31 + x28 + x25 + x24 + x21 + x20 + x19 + x18 + x17 + x15 + x13 + x12 + x9 + x6 + x5 + x3 + x2 + x