gf(2) Iterate until all irreducible factors of f0 are found

f0 = b0000000000000000111101111101100100100100100111111111001100111111
f0 = 0x0000f7d9249ff33f
f0 = x47 + x46 + x45 + x44 + x42 + x41 + x40 + x39 + x38 + x36 + x35 + x32 + x29 + x26 + x23 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x9 + x8 + x5 + x4 + x3 + x2 + x + 1

Find at least one irreducible factor of f0, if it exists.

Remove f0 from list of resulting factors.
Add:

f1 = b0000000000000000000000000000000000000000001001111000101010011001
f1 = 0x0000000000278a99
f1 = x21 + x18 + x17 + x16 + x15 + x11 + x9 + x7 + x4 + x3 + 1

f2 = b0000000000000000000000000000000000000000000000000000000011000001
f2 = 0x00000000000000c1
f2 = x7 + x6 + 1

f3 = b0000000000000000000000000000000000000000000001101010101111101101
f3 = 0x000000000006abed
f3 = x18 + x17 + x15 + x13 + x11 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1

f4 = b0000000000000000000000000000000000000000000000000000000000000011
f4 = 0x0000000000000003
f4 = x + 1

f1 = b0000000000000000000000000000000000000000001001111000101010011001
f1 = 0x0000000000278a99
f1 = x21 + x18 + x17 + x16 + x15 + x11 + x9 + x7 + x4 + x3 + 1

Find at least one irreducible factor of f1, if it exists.

f1 is irreducible.

f2 = b0000000000000000000000000000000000000000000000000000000011000001
f2 = 0x00000000000000c1
f2 = x7 + x6 + 1

Find at least one irreducible factor of f2, if it exists.

f2 is irreducible.

f3 = b0000000000000000000000000000000000000000000001101010101111101101
f3 = 0x000000000006abed
f3 = x18 + x17 + x15 + x13 + x11 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1

Find at least one irreducible factor of f3, if it exists.

Remove f3 from list of resulting factors.
Add:

f5 = b0000000000000000000000000000000000000000000000000000000101110001
f5 = 0x0000000000000171
f5 = x8 + x6 + x5 + x4 + 1

f6 = b0000000000000000000000000000000000000000000000000000011111011101
f6 = 0x00000000000007dd
f6 = x10 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + 1

f4 = b0000000000000000000000000000000000000000000000000000000000000011
f4 = 0x0000000000000003
f4 = x + 1

Find at least one irreducible factor of f4, if it exists.

f4 is irreducible.

f5 = b0000000000000000000000000000000000000000000000000000000101110001
f5 = 0x0000000000000171
f5 = x8 + x6 + x5 + x4 + 1

Find at least one irreducible factor of f5, if it exists.

f5 is irreducible.

f6 = b0000000000000000000000000000000000000000000000000000011111011101
f6 = 0x00000000000007dd
f6 = x10 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + 1

Find at least one irreducible factor of f6, if it exists.

Remove f6 from list of resulting factors.
Add:

f7 = b0000000000000000000000000000000000000000000000000000000000110111
f7 = 0x0000000000000037
f7 = x5 + x4 + x2 + x + 1

f8 = b0000000000000000000000000000000000000000000000000000000000101111
f8 = 0x000000000000002f
f8 = x5 + x3 + x2 + x + 1

f7 = b0000000000000000000000000000000000000000000000000000000000110111
f7 = 0x0000000000000037
f7 = x5 + x4 + x2 + x + 1

Find at least one irreducible factor of f7, if it exists.

f7 is irreducible.

f8 = b0000000000000000000000000000000000000000000000000000000000101111
f8 = 0x000000000000002f
f8 = x5 + x3 + x2 + x + 1

Find at least one irreducible factor of f8, if it exists.

f8 is irreducible.

Irreducible factors:

f0 = (b1001111000101010011001)(b11000001)(b11)(b101110001)(b110111)(b101111)
f0 = (0x278a99)(0xc1)(0x3)(0x171)(0x37)(0x2f)
f0 = (x21 + x18 + x17 + x16 + x15 + x11 + x9 + x7 + x4 + x3 + 1)(x7 + x6 + 1)(x + 1)(x8 + x6 + x5 + x4 + 1)(x5 + x4 + x2 + x + 1)(x5 + x3 + x2 + x + 1)